Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bromodomain and extra-terminal motif (BET) inhibition is synthetic lethal with loss of SMAD4 in colorectal cancer cells via restoring the loss of MYC repression

Abstract

The tumor suppressor SMAD4 is frequently mutated in colorectal cancer (CRC). However, no effective targeted therapies exist for CRC with SMAD4 loss. Here, we employed a synthetic lethality drug screening in isogenic SMAD4+/+ and SMAD4−/− HCT116 CRC cells and found that bromodomain and extra-terminal motif (BET) inhibitors, as selective drugs for the growth of SMAD4−/− HCT116 cells. BET inhibition selectively induced G1 cell cycle arrest in SMAD4−/− cells and this effect was accompanied by the reprogramming of the MYC-p21 axis. Mechanistically, SMAD4 is a transcription repressor of MYC, and MYC in turn represses p21 transcription. SMAD4−/− cells lost MYC repression ability, thereby causing the cells addicted to the MYC oncogenic signaling. BET inhibition significantly reduced MYC level and restored p21 expression in SMAD4−/− cells, inducing the selective growth arrest. The ectopic overexpression of MYC or the silencing of p21 could rescue the BET inhibitor-induced growth arrest in SMAD4−/− cells, verifying this model. Tumor xenograft mouse experiments further demonstrated the synthetic lethality interaction between BET and SMAD4 in vivo. Taken together, our data suggest that BET could be a potential drug target for the treatment of SMAD4-deficient CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetics compound library screening identifies that SMAD4-deficient CRC cells are hypersensitive to BETi.
Fig. 2: BETi induces G1 cell cycle arrest selectively in SMAD4−/− HCT116 cells.
Fig. 3: BET inhibition led to cell growth arrest by targeting MYC-p21 axis in HCT116 SMAD4−/− cells.
Fig. 4: The SMAD4/BET synthetic lethality is broadly applicable in CRC and pancreatic cancer.
Fig. 5: BET inhibition is synthetic lethal with loss of SMAD4 in vivo.
Fig. 6: A working model for the proposed mechanism driving the synthetic lethality between SMAD4 and BET.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Sauer AG, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA-Cancer J Clin. 2020;70:145–64.

    PubMed  Google Scholar 

  2. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383:1490–502.

    PubMed  Google Scholar 

  3. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.

    CAS  PubMed  Google Scholar 

  4. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271:350–3.

    CAS  PubMed  Google Scholar 

  5. Thiagalingam S, Lengauer C, Leach FS, Schutte M, Hahn SA, Overhauser J, et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet. 1996;13:343–6.

    CAS  PubMed  Google Scholar 

  6. Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73:725–35.

    CAS  PubMed  Google Scholar 

  7. MacGrogan D, Pegram M, Slamon D, Bookstein R. Comparative mutational analysis of DPC4 (Smad4) in prostatic and colorectal carcinomas. Oncogene. 1997;15:1111–4.

    CAS  PubMed  Google Scholar 

  8. Peterfia B, Kalmar A, Patai AV, Csabai I, Bodor A, Micsik T, et al. Construction of a multiplex mutation hot spot PCR panel: the first step towards colorectal cancer genotyping on the GS Junior platform. J Cancer. 2017;8:162–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyaki M, Kuroki T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun. 2003;306:799–804.

    CAS  PubMed  Google Scholar 

  10. Salovaara R, Roth S, Loukola A, Launonen V, Sistonen P, Avizienyte E, et al. Frequent loss of SMAD4/DPC4 protein in colorectal cancers. Gut. 2002;51:56–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.

    CAS  PubMed  Google Scholar 

  12. de Caestecker MP, Hemmati P, Larisch-Bloch S, Ajmera R, Roberts AB, Lechleider RJ. Characterization of functional domains within Smad4/DPC4. J Biol Chem. 1997;272:13690–6.

    PubMed  Google Scholar 

  13. Liu F, Pouponnot C, Massague J. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 1997;11:3157–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene. 1999;18:3098–103.

    CAS  PubMed  Google Scholar 

  15. Alazzouzi H, Alhopuro P, Salovaara R, Sammalkorpi H, Jarvinen H, Mecklin JP, et al. SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res. 2005;11:2606–11.

    CAS  PubMed  Google Scholar 

  16. Yan P, Klingbiel D, Saridaki Z, Ceppa P, Curto M, McKee TA, et al. Reduced expression of SMAD4 is associated with poor survival in colon cancer. Clin Cancer Res. 2016;22:3037–47.

    CAS  PubMed  Google Scholar 

  17. Papageorgis P, Cheng K, Ozturk S, Gong Y, Lambert AW, Abdolmaleky HM, et al. Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res. 2011;71:998–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang H, Han H, Von, Hoff DD. Identification of an agent selectively targeting DPC4 (deleted in pancreatic cancer locus 4)-deficient pancreatic cancer cells. Cancer Res. 2006;66:9722–30.

    CAS  PubMed  Google Scholar 

  19. Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer. 2012;12:465–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stathis A, Bertoni F. BET proteins as targets for anticancer treatment. Cancer Disco. 2018;8:24–36.

    CAS  Google Scholar 

  22. Ahmed D, Eide PW, Eilertsen IA, Danielsen SA, Eknaes M, Hektoen M, et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2013;2:e71.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gadir N, Jackson DN, Lee E, Foster DA. Defective TGF-beta signaling sensitizes human cancer cells to rapamycin. Oncogene. 2008;27:1055–62.

    CAS  PubMed  Google Scholar 

  24. Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann Oncol. 2017;28:1776–87.

    CAS  PubMed  Google Scholar 

  25. Chen CR, Kang Y, Siegel PM, Massague J. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell. 2002;110:19–32.

    CAS  PubMed  Google Scholar 

  26. Gartel AL, Ye X, Goufman E, Shianov P, Hay N, Najmabadi F, et al. Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci USA. 2001;98:4510–5.

    CAS  PubMed  Google Scholar 

  27. Zhang B, Lyu J, Liu Y, Wu C, Yang EJ, Pardeshi L, et al. BRCA1 deficiency sensitizes breast cancer cells to bromodomain and extra-terminal domain (BET) inhibition. Oncogene. 2018;37:6341–56.

    CAS  PubMed  Google Scholar 

  28. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disco. 2012;2:401–4.

    Google Scholar 

  29. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    PubMed  PubMed Central  Google Scholar 

  30. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46:D956–63.

    CAS  PubMed  Google Scholar 

  31. Jansen-Durr P, Meichle A, Steiner P, Pagano M, Finke K, Botz J, et al. Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA. 1993;90:3685–9.

    CAS  PubMed  Google Scholar 

  32. Choi PS, Li Y, Felsher DW. Addiction to multiple oncogenes can be exploited to prevent the emergence of therapeutic resistance. Proc Natl Acad Sci USA. 2014;111:E3316–24.

    CAS  PubMed  Google Scholar 

  33. Woodford-Richens KL, Rowan AJ, Gorman P, Halford S, Bicknell DC, Wasan HS, et al. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Proc Natl Acad Sci USA. 2001;98:9719–23.

    CAS  PubMed  Google Scholar 

  34. Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL, et al. Phenotype and genotype of pancreatic cancer cell lines. Pancreas. 2010;39:425–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell. 1998;94:585–94.

    CAS  PubMed  Google Scholar 

  36. Macias MJ, Martin-Malpartida P, Massague J. Structural determinants of Smad function in TGF-beta signaling. Trends Biochem Sci. 2015;40:296–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones JB, Kern SE. Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4. Nucleic Acids Res. 2000;28:2363–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19:1745–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Itoh S, Ericsson J, Nishikawa J, Heldin CH, ten Dijke P. The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Res. 2000;28:4291–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang JS, Alliston T, Delston R, Derynck R. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J. 2005;24:2543–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005;19:2783–810.

    CAS  PubMed  Google Scholar 

  42. Alexandrow MG, Moses HL. Transforming growth factor beta and cell cycle regulation. Cancer Res. 1995;55:1452–7.

    CAS  PubMed  Google Scholar 

  43. Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF. Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol. 2004;24:2546–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen CR, Kang Y, Massague J. Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA. 2001;98:992–9.

    CAS  PubMed  Google Scholar 

  45. Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 2014;4:a014241.

    PubMed  PubMed Central  Google Scholar 

  46. Li Y, Casey SC, Felsher DW. Inactivation of MYC reverses tumorigenesis. J Intern Med. 2014;276:52–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA. 2011;108:16669–74.

    CAS  PubMed  Google Scholar 

  48. Picaud S, Da Costa D, Thanasopoulou A, Filippakopoulos P, Fish PV, Philpott M, et al. PFI-1, a highly selective protein interaction inhibitor, targeting BET Bromodomains. Cancer Res. 2013;73:3336–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bretones G, Delgado MD, Leon J. Myc and cell cycle control. Biochim Biophys Acta. 2015;1849:506–16.

    CAS  PubMed  Google Scholar 

  52. Wu S, Cetinkaya C, Munoz-Alonso MJ, von der Lehr N, Bahram F, Beuger V, et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene. 2003;22:351–60.

    CAS  PubMed  Google Scholar 

  53. Dong X, Hu X, Chen J, Hu D, Chen LF. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis. Cell Death Dis. 2018;9:203.

    PubMed  PubMed Central  Google Scholar 

  54. Garcia-Gutierrez L, Delgado MD, Leon J. MYC oncogene contributions to release of cell cycle brakes. Genes (Basel). 2019;10:244.

    Google Scholar 

  55. Alqahtani A, Choucair K, Ashraf M, Hammouda DM, Alloghbi A, Khan T. et al. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci OA. 2019;5:FSO372.

    PubMed  PubMed Central  Google Scholar 

  56. Amorim S, Stathis A, Gleeson M, Iyengar S, Magarotto V, Leleu X, et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol. 2016;3:E196–204.

    PubMed  Google Scholar 

  57. Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Yee K, et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016;3:E186–95.

    PubMed  Google Scholar 

  58. Lewin J, Soria JC, Stathis A, Delord JP, Peters S, Awada A, et al. Phase Ib Trial with birabresib, a small-molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors. J Clin Oncol. 2018;36:3007–14.

    CAS  PubMed  Google Scholar 

  59. Cheng Z, Gong Y, Ma Y, Lu K, Lu X, Pierce LA, et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin Cancer Res. 2013;19:1748–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Williamson CT, Miller R, Pemberton HN, Jones SE, Campbell J, Konde A, et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat Commun. 2016;7:13837.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharm. 2010;160:1577–9.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank to the members of the FHS Animal Facility, Biological Imaging and Stem Cell Core, and Genomics, Bioinformatics and Single Cell Core at the University of Macau for experimental and technical supports. This study was supported by the Multi-Year Research Grants (MYRG2019-00116-FHS and MYRG2017-00176-FHS) to JSS from the University of Macau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Sup Shim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Yang, E.J., Liu, Y. et al. Bromodomain and extra-terminal motif (BET) inhibition is synthetic lethal with loss of SMAD4 in colorectal cancer cells via restoring the loss of MYC repression. Oncogene 40, 937–950 (2021). https://doi.org/10.1038/s41388-020-01580-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01580-w

This article is cited by

Search

Quick links