Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multifaceted roles of TAK1 signaling in cancer

Abstract

Context-specific signaling is a prevalent theme in cancer biology wherein individual molecules and pathways can have multiple or even opposite effects depending on the tumor type. TAK1 represents a particularly notable example of such signaling diversity in cancer progression. Originally discovered as a TGF-β-activated kinase, over the years it has been shown to respond to numerous other stimuli to phosphorylate a wide range of downstream targets and elicit distinct cellular responses across cell and tissue types. Here we present a comprehensive review of TAK1 signaling and provide important therapeutic perspectives related to its function in different cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science. 1995;270:2008–11.

    CAS  PubMed  Google Scholar 

  2. Dai L, Aye Thu C, Liu XY, Xi J, Cheung PC. TAK1, more than just innate immunity. IUBMB Life. 2012;64:825–34.

    CAS  PubMed  Google Scholar 

  3. Hirata Y, Takahashi M, Morishita T, Noguchi T, Matsuzawa A. Post-translational modifications of the TAK1-TAB complex. Int J Mol Sci. 2017;18:205. https://doi.org/10.3390/ijms18010205.

    Article  CAS  PubMed Central  Google Scholar 

  4. Sakurai H. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharm Sci. 2012;33:522–30.

    CAS  PubMed  Google Scholar 

  5. Shah N, Kumar S, Zaman N, Pan C, Bloodworth J, Lei W, et al. TAK1 activation of alpha-TAT1 and microtubule hyperacetylation control AKT signaling and cell growth. Nat Commun. 2018;9:1696. https://doi.org/10.1038/s41467-018-04121-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hashimoto K, Simmons AN, Kajino-Sakamoto R, Tsuji Y, Ninomiya-Tsuji J. TAK1 regulates the Nrf2 antioxidant system through modulating p62/SQSTM1. Antioxid Redox Signal. 2016;25:17. https://doi.org/10.1089/ars.2016.6663.

    Article  CAS  Google Scholar 

  7. Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M, et al. A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP- activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA. 2006;103:17378–83.

    CAS  PubMed  Google Scholar 

  8. Ohkawara B, Shirakabe K, Hyodo-Miura J, Matsuo R, Ueno N, Matsumoto K, et al. Role of the TAK1-NLK-STAT3 pathway in TGF-β-mediated mesoderm induction. Gene Dev. 2004;18:381–6.

    CAS  PubMed  Google Scholar 

  9. Hoffmann A, Preobrazhenska O, Wodarczyk C, Medler Y, Winkel A, Shahab S, et al. Transforming growth factor-β-activated kinase-1 (TAK1), a MAP3K, interacts with SMAD proteins and interferes with osteogenesis in murine mesenchymal progenitors. J Biol Chem. 2005;280:27271–83.

    CAS  PubMed  Google Scholar 

  10. Smit L, Baas A, Kuipers J, Korswagen H, van de Wetering M, Clevers H. Wnt activates the Tak1/Nemo-like kinase pathway. J Biol Chem. 2004;279:17232–40.

    CAS  PubMed  Google Scholar 

  11. Santoroa R, Carbonea C, Piroa G, Chiaob PJ, Melisia D. TAK-ing aim at chemoresistance: the emerging role of MAP3K7 as a target for cancer therapy. Drug Resist Updat. 2017;33-35:36–42.

    Google Scholar 

  12. Roh YS, Song J, Seki E. TAK1 regulates hepatic cell survival and carcinogenesis. J Gastroenterol. 2014;49:185–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim SI, Choi ME. TGF-β-activated kinase-1: new insights into the mechanism of TGF-β signaling and kidney disease. Kidney Res Clin Pr. 2012;31:94–105.

    Google Scholar 

  14. Mihaly SR, Ninomiya-Tsuji J, Morioka S. TAK1 control of cell death. Cell Death Differ. 2014;21:1667–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, et al. Targeting the TGFβ pathway for cancer therapy. Pharm Therapeut. 2015;147:22–31.

    CAS  Google Scholar 

  16. Park MH, Hong JT. Roles of NFκB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 2016;5:15. https://doi.org/10.3390/cells5020015.

    Article  PubMed Central  Google Scholar 

  17. Burotto M, Chiou VL, Jung-Min L, Kohn E. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120:3446–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, et al. TAB1: An activator of the TAK1 MAPKKK in TGF-β signal transduction. Science. 1996;272:1179–82.

    CAS  PubMed  Google Scholar 

  19. Besse A, Lamothe B, Campos AD, Webster WK, Maddineni U, Lin SC, et al. TAK-1 dependent signaling requires functional interaction with TAB2/TAB3. J Biol Chem. 2007;282:3918–28.

    CAS  PubMed  Google Scholar 

  20. Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell. 2000;5:649–58.

    CAS  PubMed  Google Scholar 

  21. Cheung PC, Nebreda AR, Cohen P. TAB3, a new binding partner of the protein kinase TAK1. Biochem J. 2004;378:27–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sakurai H, Miyoshi H, Mizukami J, Sugita T. Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett. 2000;474:141–5.

    CAS  PubMed  Google Scholar 

  23. Yu Y, Ge N, Xie M, Sun W, Burlingame S, Pass AK, et al. Phosphorylation of Thr-178 and Thr-184 in the TAK1 T-loop is required for interleukin (IL)-1-mediated optimal NF-κB and AP-1 activation as well as IL-6 gene expression. J Biol Chem. 2008;283:24497–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Singhirunnusorn P, Suzuki S, Kawasaki N, Saiki I, Sakurai H. Critical roles of threonine 187 phosphorylation in cellular stress induced rapid and transient activation of transforming growth factor-β activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J Biol Chem. 2005;280:7359–68.

    CAS  PubMed  Google Scholar 

  25. Hamidi A, von Bulow V, Hamidi R, Winssinger N, Barluenga S, Heldin CH, et al. Polyubiquitination of transforming growth factor β (TGF-β)-associated kinase 1 mediates nuclear factor-κB activation in response to different inflammatory stimuli. J Biol Chem. 2012;287:123–33.

    CAS  PubMed  Google Scholar 

  26. Zhang D, Xu Z, Tao T, Liu X, Sun X, Ji Y, et al. Modification of TAK1 by O-linked N-acetylglucosamine facilitates TAK1 activation and promotes M1 macrophage polarization. Cell Signal. 2016;28:1742–52.

    CAS  PubMed  Google Scholar 

  27. Ishitani T, Kishida S, Hyodo-Miura J, Ueno N, Yasuda J, Waterman M, et al. The TAK1-NLK Mitogen-Activated Protein Kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/β-Catenin signaling. Mol Cell Biol. 2003;23:131–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, et al. The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 2008;10:1199–207.

    CAS  PubMed  Google Scholar 

  29. Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Mol Cell. 2008;31:918–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1–TAK1 in the BMP signaling pathway. EMBO J. 1999;18:179–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol. 2005;6:1087–95.

    CAS  PubMed  Google Scholar 

  32. Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 2004;14:289–301.

    CAS  PubMed  Google Scholar 

  33. Shinohara H, Yasuda T, Aiba Y, Sanjo H, Hamadate M, Watarai H, et al. PKC β regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1. J Exp Med. 2005;202:1423–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hinz M, Stilmann M, Arslan SC, Khanna KK, Dittmar G, Scheidereit C. A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NFκB activation. Mol Cell. 2010;40:63–74.

    CAS  PubMed  Google Scholar 

  35. Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S, et al. ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol Cell. 2010;40:75–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Y, Xia F, Hermance N, Mabb A, Simonson S, Morrissey S, et al. A cytosolic ATM/NEMO/RIP1 complex recruits TAK1 to mediate the NF-κB and p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 responses to DNA damage. Mol Cell Biol. 2011;31:2774–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Blanco S, Santos C, Lazo PA. Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol. 2007;27:7273–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Melvin A, Mudie S, Rocha S. Further insights into the mechanism of hypoxia-induced NF-κB. Cell Cycle. 2011;10:879–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Inagaki M, Omori E, Kim JY, Komatsu Y, Scott G, Ray MK, et al. TAK1-binding protein 1, TAB1, mediates osmotic stress-induced TAK1 activation but is dispensable for TAK1-mediated cytokine signaling. J Biol Chem. 2008;283:33080–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huangfu WC, Omori E, Akira S, Matsumoto K, Ninomiya-Tsuji J. Osmotic stress activates the TAK1–JNK pathway while blocking TAK1-mediated NF-κB activation: TAO2 regulates TAK1 pathways. J Biol Chem. 2006;281:28802–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ear T, Fortin CF, Simard FA, McDonald PP. Constitutive association of TGF-β-activated kinase 1 with the IκB kinase complex in the nucleus and cytoplasm of human neutrophils and its impact on downstream processes. J Immunol. 2010;184:3897–906.

    CAS  PubMed  Google Scholar 

  42. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  Google Scholar 

  43. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Inokuchi S, Aoyama T, Miura K, Osterreicher CH, Kodama Y, Miyai K, et al. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci USA. 2010;107:844–9.

    CAS  PubMed  Google Scholar 

  46. Bettermann K, Vucur M, Haybaeck J, Koppe C, Janssen J, Heymann F, et al. TAK1 suppresses a NEMO-dependent but NF-κB-independent pathway to liver cancer. Cancer Cell. 2010;17:481–96.

    CAS  PubMed  Google Scholar 

  47. Yang L, Inokuchi S, Roh YS, Song J, Loomba R, Park EJ, et al. Transforming growth factor-beta signaling in hepatocytes promotes hepatic fibrosis and carcinogensis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology. 2013;144:1042–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Inokuchi-Shimizu S, Park EJ, Roh YS, Yang L, Zhang B, Song J, et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J Clin Invest. 2014;124:3566–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48:e245. https://doi.org/10.1038/emm.2016.81.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dasgupta B, Chhipa RR. Evolving lessons on the complex role of AMPK in normal physiology and cancer. Trends Pharm Sci. 2016;37:192–206.

    CAS  PubMed  Google Scholar 

  51. Liu W, Chang BL, Cramer S, Koty PP, Li T, Sun J, et al. Deletion of a small consensus region at 6q15, including the MAP3K7 gene, is significantly associated with high-grade prostate cancers. Clin Cancer Res. 2007;13:5028–33.

    CAS  PubMed  Google Scholar 

  52. Wu M, Shi L, Cimic A, Romero L, Sui G, Lees CJ, et al. Suppression of Tak1 promotes prostate tumorigenesis. Cancer Res. 2012;72:2833–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cordas Dos Santos DM, Eiler J, Sosa Vizaino A, Orlova EZimmermann M, Stanulla M, Schrappe M, et al. MAP3K7 is recurrently deleted in pediatric T-lymphobastic leukemia and affects cell proliferation independently of NF-κB. BMC Cancer. 2018;18:663. https://doi.org/10.1186/s12885-018-4525-0.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lamothe B, Lai YJ, Hur L, Orozco NM, Wang J, Campos AD, et al. Deletion of TAK1 in the myeloid lineage results in the spontaneous development of myelomonocytic leukemia in mice. PLoS ONE. 2012;7:e51228. https://doi.org/10.1371/journal.pone.0051228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lam CR, Tan C, Teo Z, Tay CY, Phua T, Wu YL, et al. Loss of TAK1 increases cell traction force in a ROS-dependent manner to drive epithelial-mesenchymal transition of cancer cells. Cell Death Dis. 2013;4:e848. https://doi.org/10.1038/cddis.2013.339.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Omori E, Morioka S, Matsumoto K, Ninomiya-Tsuji J. TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity. J Biol Chem. 2008;283:26161–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lam CRI, Tan MJ, Tan SH, Tang MBY, Cheung PCF, Tan NS. TAK1 regulates SCF expression to modulate PKBα activity that protects keratinocytes from ROS-induced apoptosis. Cell Death Differ. 2011;18:1120–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kajino-Sakamoto R, Omori E, Nighot PK, Blislager AT, Matsumoto K, Ninomiya-Tsuji J. TGF-β-activated kinase 1 signaling maintains intestinal integrity by preventing accumulation of reactive oxygen species in the intestinal epithelium. J Immunol. 2010;185:4729–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ogura Y, Hindi SM, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123. https://doi.org/10.1038/ncomms10123.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Freudlsperger C, Bian Y, Wise SC, Burnett J, Coupar J, Yang X, et al. TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene. 2013;32:1549–59.

    CAS  PubMed  Google Scholar 

  62. Wen J, Hu Y, Luo KJ, Yang H, Zhang SS, Fu JH. Positive transforming growth factor-β activated kinase-1 expression has an unfavorable impact on survival in T3N1-3M0 esophageal squamous cell carcinomas. Ann Thorac Surg. 2013;95:285–91.

    PubMed  Google Scholar 

  63. Wei Y, Zhou R, Wang Q, Beibei F, Jing W, Wang H. Expression and function of TAK1 in osteosarcoma tissue. Int J Clin Exp Med. 2016;9:10891–8.

    CAS  Google Scholar 

  64. Lin P, Niu W, Peng C, Zhang Z, Niu J. The role of TAK1 expression in thyroid cancer. Int J Clin Exp Pathol. 2015;8:14449–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang Y, Qiu Y, Tang M, Wu Z, Hu W, Chen C. Expression and function of transforming growth factor-β-activated protein kinase 1 in gastric cancer. Mol Med Rep. 2017;16:3103–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai PCH, Shi L, Liu VWS, Tang HWM, Liu IJ, Leung THY, et al. Elevated TAK1 augments tumor growth and metastatic capacities of ovarian cancer cells through activation of NF-κB signaling. Oncotarget. 2014;5:7549–62.

    PubMed  PubMed Central  Google Scholar 

  67. Terada Y, Inoshita S, Nakashima O, Kuwahara M, Sasaki S, Marumo F. Regulation of cyclin D1 expression and cell cycle progression by mitogen-activated protein kinase cascade. Kidney Int. 1999;56:1258–61.

    CAS  PubMed  Google Scholar 

  68. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS. NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 1999;19:5785–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Iriondo O, Liu Y, Lee G, Elhodaky M, Jimenez C, Lin L, et al. TAK1 mediates microenvironment-triggered autocrine signals and promotes triple-negative breast cancer lung metastasis. Nat Commun. 2018;9:1994. https://doi.org/10.1038/s41467-018-04460-w.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Safina A, Sotomayor P, Limoge M, Morrison C, Bakin AV. TAK1-TAB2 signaling contributes to bone destruction by breast carcinoma cells. Mol Cancer Res. 2011;9:1042–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ray DM, Myers PH, Painter JT, Hoenerhoff MJ, Olden K, Roberts JD. Inhibition of transforming growth factor-β activated kinase-1 blocks cancer cell adhesion, invasion, and metastasis. Br J Cancer. 2012;107:129–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang L, Yu L, Zhang X, Lei F, Wang L, Liu X, et al. miR-892b silencing activates NF-κB and promotes aggressiveness in breast cancer. Cancer Res. 2016;76:1101–11.

    CAS  PubMed  Google Scholar 

  73. Safina A, Ren M-Q, Vandette E, Bakin AV. TAK1 is required for TGFβ1-mediated regulation of matrix metalloproteinase-9 and metastasis. Oncogene. 2008;27:1198–207.

    CAS  PubMed  Google Scholar 

  74. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2:737–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang HL, Chiang CH, Hung WC, Hou MF. Targeting of TGF-β-activated protein kinase 1 inhibits chemokine (C-C motif) receptor 7 expression, tumor growth and metastasis in breast cancer. Oncotarget. 2014;6:995–1007.

    PubMed Central  Google Scholar 

  76. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initation to metastatic progression. Genes Dev. 2018;32:1267–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Taylor EB, An D, Kramer HF, Yu H, Fujii NL, Roeckl KS, et al. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem. 2008;283:9787–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell. 2013;49:1167–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zheng D, MacLean PS, Pohnert SC, Knight JB, Olson AL, Winder WW, et al. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J Appl Physiol. 2001;91:1073–83.

    CAS  PubMed  Google Scholar 

  80. Stoppani J, Hildebrandt AL, Sakamato K, Cameron-Smith D, Goodyear LJ, Neufer PD. AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2002;283:E1239–1248.

    CAS  PubMed  Google Scholar 

  81. Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol. 2000;10:1247–55.

    CAS  PubMed  Google Scholar 

  82. Marsin AS, Bouzin C, Bertrand L, Hue L. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem. 2002;277:30778–83.

    CAS  PubMed  Google Scholar 

  83. Ahmed N, Zeng M, Sinha I, Polin L, We WZ, Rathinam C, et al. The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat Immunol. 2011;12:1176–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ajibade AA, Wang Q, Cui J, Zou J, Xia X, Wang M, et al. TAK1 negatively regulates NF-κB and p38 MAP kinase activation in Gr-1+CD11b+ neutrophils. Immunity. 2012;36:43–54.

    PubMed  PubMed Central  Google Scholar 

  85. Massague J. TGFβ in cancer. Cell. 2008;134:215–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Syed V. TGFβ signaling in cancer. J Cell Biochem. 2016;117:1279–87.

    CAS  PubMed  Google Scholar 

  87. Morioka S, Inagaki M, Komatasu Y, Mishina Y, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. Blood. 2012;120:3846–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Naito H, Iba T, Wakabayashi T, Tai-Nagara I, Suehiro JI, Jia W, et al. TAK1 prevents endothelial apoptosis and maintains vascular integrity. Dev Cell. 2019;48:151–66.

    CAS  PubMed  Google Scholar 

  89. Singh A, Sweeney MF, Yu M, Burger A, Greninger P, Benes C, et al. TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell. 2012;148:639–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. McNew KL, Whipple WJ, Mehta AK, Grant TJ, Ray L, Kenny C, et al. MEK and TAK1 regulate apoptosis in colon cancer cells with KRAS-dependent activation of proinflammatory signaling. Mol Cancer Res. 2016;14:1204–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Augeri DJ, Langenfeld E, Castle M, Gilleran JA, Langenfeld J. Inhibition of BMP and TGFβ receptors downregulates expression of XIAP and TAK1 leading to lung cancer cell death. Mol Cancer. 2016;15:27. https://doi.org/10.1186/s12943-016-0511-9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Buglio D, Palakurthi S, Byth K, Vega F, Toader D, Saeh J, et al. Essential role of TAK1 in regulating mantle cell lymphoma survival. Blood. 2012;120:347–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Totzke J, Gurbani D, Raphemot R, Hughes P, Bodoor K, Carlson DA, et al. Takinib, a selective TAK1 inhibitor, broadens the therapeutic efficacy of TNF-α inhibition for cancer and autoimmune disease. Cell Chem Biol. 2017;24:1029–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Melisi D, Xia Q, Paradiso G, Ling J, Moccia T, Carbone C, et al. Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst. 2011;103:1190–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Choo MK, Kawasaki N, Singhirunnusorn P, Koizumi K, Sato S, Akira S, et al. Blockade of transforming growth factor-β-activated kinase 1 activity enhances TRAIL-induced apoptosis through activation of a caspase cascade. Mol Cancer Ther. 2006;5:2970–6.

    CAS  PubMed  Google Scholar 

  96. Vallet-Regi M, Colilla M, Izquierdo-Barba I, Manzano M. Mesoporous silica nanoparticles for drug delivery: current insights. Molecules. 2018;23:47. https://doi.org/10.3390/molecules23010047.

    Article  CAS  Google Scholar 

  97. Chowdhury SM, Lee T, Willmann JK. Ultrasound-guided drug delivery in cancer. Ultrasonography. 2017;36:171–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Y. Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, H., Lee, N.Y. Multifaceted roles of TAK1 signaling in cancer. Oncogene 39, 1402–1413 (2020). https://doi.org/10.1038/s41388-019-1088-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1088-8

This article is cited by

Search

Quick links