Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SEMA4C is a novel target to limit osteosarcoma growth, progression, and metastasis

Abstract

Semaphorins, specifically type IV, are important regulators of axonal guidance and have been increasingly implicated in poor prognoses in a number of different solid cancers. In conjunction with their cognate PLXNB family receptors, type IV members have been increasingly shown to mediate oncogenic functions necessary for tumor development and malignant spread. In this study, we investigated the role of semaphorin 4C (SEMA4C) in osteosarcoma growth, progression, and metastasis. We investigated the expression and localization of SEMA4C in primary osteosarcoma patient tissues and its tumorigenic functions in these malignancies. We demonstrate that overexpression of SEMA4C promotes properties of cellular transformation, while RNAi knockdown of SEMA4C promotes adhesion and reduces cellular proliferation, colony formation, migration, wound healing, tumor growth, and lung metastasis. These phenotypic changes were accompanied by reductions in activated AKT signaling, G1 cell cycle delay, and decreases in expression of mesenchymal marker genes SNAI1, SNAI2, and TWIST1. Lastly, monoclonal antibody blockade of SEMA4C in vitro mirrored that of the genetic studies. Together, our results indicate a multi-dimensional oncogenic role for SEMA4C in metastatic osteosarcoma and more importantly that SEMA4C has actionable clinical potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morrow JJ, Khanna C. Osteosarcoma genetics and epigenetics: emerging biology and candidate therapies. Crit Rev Oncogenesis. 2015;20:173–97.

    Article  PubMed  Google Scholar 

  2. Yan GN, Lv YF, Guo QN. Advances in osteosarcoma stem cell research and opportunities for novel therapeutic targets. Cancer Lett. 2016;370:268–74.

    Article  CAS  PubMed  Google Scholar 

  3. Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13:480–91.

    Article  CAS  PubMed  Google Scholar 

  4. Rickel K, Fang F, Tao J. Molecular genetics of osteosarcoma. Bone. 2017;102:69–79.

    Article  CAS  PubMed  Google Scholar 

  5. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115:1531–43.

    Article  PubMed  Google Scholar 

  6. Alto LT, Terman JR. Semaphorins and their signaling mechanisms. Methods Mol Biol. 2017;1493:1–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyer LA, Fritz J, Pierdant-Mancera M, Bagnard D. Current drug design to target the Semaphorin/Neuropilin/Plexin complexes. Cell Adhes Migr. 2016;10:700–8.

    Article  CAS  Google Scholar 

  8. Tamagnone L. Emerging role of semaphorins as major regulatory signals and potential therapeutic targets in cancer. Cancer Cell. 2012;22:145–52.

    Article  CAS  PubMed  Google Scholar 

  9. Worzfeld T, Offermanns S. Semaphorins and plexins as therapeutic targets. Nat Rev Drug Discov. 2014;13:603–21.

    Article  CAS  PubMed  Google Scholar 

  10. Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17:1473–80.

    Article  CAS  PubMed  Google Scholar 

  11. Moriarity BS, Otto GM, Rahrmann EP, Rathe SK, Wolf NK, Weg MT, et al. A sleeping beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat Genet. 2015;47:615–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abarrategi A, Tornin J, Martinez-Cruzado L, Hamilton A, Martinez-Campos E, Rodrigo JP, et al. Osteosarcoma: cells-of-origin, cancer stem cells, and targeted therapies. Stem Cells Int. 2016;2016:3631764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Swiercz JM, Worzfeld T, Offermanns S. ErbB-2 and met reciprocally regulate cellular signaling via plexin-B1. J Biol Chem. 2008;283:1893–901.

    Article  CAS  PubMed  Google Scholar 

  14. Gurrapu S, Pupo E, Franzolin G, Lanzetti L, Tamagnone L. Sema4C/PlexinB2 signaling controls breast cancer cell growth, hormonal dependence and tumorigenic potential. Cell Death Differ. 2018;25:1259–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu J, Lin Y, Li F, Ye H, Zhou R, Jin Y, et al. MiR-205 suppresses tumor growth, invasion, and epithelial-mesenchymal transition by targeting SEMA4C in hepatocellular carcinoma. FASEB J. 2018;32:fj201800113R.

    Google Scholar 

  16. Le AP, Huang Y, Pingle SC, Kesari S, Wang H, Yong RL, et al. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget. 2015;6:7293–304.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Paldy E, Simonetti M, Worzfeld T, Bali KK, Vicuna L, Offermanns S, et al. Semaphorin 4C Plexin-B2 signaling in peripheral sensory neurons is pronociceptive in a model of inflammatory pain. Nat Commun. 2017;8:176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Xue D, Desjardins M, Kaufman GN, Béland M, Al-Tamemi S, Ahmed E, et al. Semaphorin 4C: A novel component of B-cell polarization in Th2-driven immune responses. Front Immunol. 2016;7:558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wei JC, Yang J, Liu D, Wu MF, Qiao L, Wang JN, et al. Tumor-associated lymphatic endothelial cells promote lymphatic metastasis by highly expressing and secreting SEMA4C. Clin Cancer Res. 2017;23:214–24.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang WG, Sanders AJ, Katoh M, Ungefroren H, Gieseler F, Prince M, et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol. 2015;35 Suppl:S244–s275.

    Article  CAS  PubMed  Google Scholar 

  21. Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, et al. Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene. 2009;28:2796–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Butti R, Kumar TV, Nimma R, Kundu GC. Impact of semaphorin expression on prognostic characteristics in breast cancer. Breast Cancer. 2018;10:79–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. García Z, Kumar A, Marqués M, Cortés I, Carrera AC. Phosphoinositide 3-kinase controls early and late events in mammalian cell division. EMBO J. 2006;25:655–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Smeester BA, Al-Gizawiy M, Beitz AJ. Effects of different electroacupuncture sch eduling regimens on murine bone tumor-induced hyperalgesia: sex differences and role of inflammation. Evid-Bed Complement Altern Med. 2012;2012:671386.

    Google Scholar 

  25. Smeester BA, Al-Gizawiy M, O’Brien EE, Ericson ME, Triemstra JL, Beitz AJ. The effect of electroacupuncture on osteosarcoma tumor growth and metastasis: analysis of different treatment regimens. Evid-Based Complement Altern Med. 2013;2013:387169.

    Article  Google Scholar 

  26. Yang Q, Wang Y, Lu X, Zhao Z, Zhu L, Chen S, et al. MiR-125b regulates epithelial-mesenchymal transition via targeting Sema4C in paclitaxel-resistant breast cancer cells. Oncotarget. 2015;6:3268–79.

    Article  PubMed  Google Scholar 

  27. Zhou QD, Ning Y, Zeng R, Chen L, Kou P, Xu CO, et al. Erbin interacts with Sema4C and inhibits Sema4C-induced epithelial-mesenchymal transition in HK2 cells. J Huazhong Univ Sci Technol Med Sci = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban. 2013;33:672–9.

    Article  CAS  Google Scholar 

  28. Roche J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers. 2018;10:1–4.

    Google Scholar 

  29. Yin K, Liao Q, He H, Zhong D. Prognostic value of Twist and E-cadherin in patients with osteosarcoma. Med Oncol. 2012;29:3449–55.

    Article  CAS  PubMed  Google Scholar 

  30. Horvai AE, Roy R, Borys D, O’Donnell RJ. Regulators of skeletal development: a cluster analysis of 206 bone tumors reveals diagnostically useful markers. Mod Pathol. 2012;25:1452–61.

    Article  CAS  PubMed  Google Scholar 

  31. Lee KW, Lee NK, Ham S, Roh TY, Kim SH. Twist1 is essential in maintaining mesenchymal state and tumor-initiating properties in synovial sarcoma. Cancer Lett. 2014;343:62–73.

    Article  CAS  PubMed  Google Scholar 

  32. Choo S, Wang P, Newbury R, Roberts W, Yang J. Reactivation of TWIST1 contributes to Ewing sarcoma metastasis. Pediatr Blood Cancer. 2018;65:1–18.

    Article  CAS  Google Scholar 

  33. Leder K, Holland EC, Michor F. The therapeutic implications of plasticity of the cancer stem cell phenotype. PLoS ONE. 2010;5:e14366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Poleszczuk J, Enderling H. Cancer stem cell plasticity as tumor growth promoter and catalyst of population collapse. Stem Cells Int. 2016;2016:3923527.

    Article  PubMed  CAS  Google Scholar 

  35. Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, et al. Identification of the human skeletal stem cell. Cell. 2018;175:43–56.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar S, Das A, Sen S. Extracellular matrix density promotes EMT by weakening cell–cell adhesions. Mol Biosyst. 2014;10:838–50.

    Article  CAS  PubMed  Google Scholar 

  38. Ye X, Weinberg RA. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 2015;25:675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meazza C, Scanagatta P. Metastatic osteosarcoma: a challenging multidisciplinary treatment. Expert Rev Anticancer Ther. 2016;16:543–56.

    Article  CAS  PubMed  Google Scholar 

  40. Deng S, Hirschberg A, Worzfeld T, Penachioni JY, Korostylev A, Swiercz JM, et al. Plexin-B2, but not Plexin-B1, critically modulates neuronal migration and patterning of the developing nervous system in vivo. J Neurosci. 2007;27:6333–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clavijo PE, Friedman J, Robbins Y, Moore EC, Smith ES, Zauderer M, et al. Semaphorin4D inhibition improves response to immune checkpoint blockade via attenuation of MDSC recruitment and function. Cancer Immunol Res. 2018;7:282–91.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Evans EE, Jonason AS Jr., Bussler H, Torno S, Veeraraghavan J, Reilly C, et al. Antibody blockade of semaphorin 4D promotes immune infiltration into tumor and enhances response to other immunomodulatory therapies. Cancer Immunol Res. 2015;3:689–701.

    Article  CAS  PubMed  Google Scholar 

  43. Evans EE, Paris M, Smith ES, Zauderer M. Immunomodulation of the tumor microenvironment by neutralization of Semaphorin 4D. Oncoimmunology. 2015;4:e1054599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Rahrmann EP, Watson AL, Keng VW, Choi K, Moriarity BS, Beckmann DA, et al. Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet. 2013;45:756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marko TA, Shamsan GA, Edwards EN, Hazelton PE, Rathe SK, Cornax I, et al. Slit-Robo GTPase-activating protein 2 as a metastasis suppressor in osteosarcoma. Sci Rep. 2016;6:39059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moriarity BS, Rahrmann EP, Beckmann DA, Conboy CB, Watson AL, Carlson DF, et al. Simple and efficient methods for enrichment and isolation of endonuclease modified cells. PLoS ONE. 2014;9:e96114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Brett ME, Bomberger HE, Doak GR, Price MA, McCarthy JB, Wood DK. In vitro elucidation of the role of pericellular matrix in metastatic extravasation and invasion of breast carcinoma cells. Integr Biol. 2018;10:242–52.

    Article  CAS  Google Scholar 

  48. Khanna C, Prehn J, Yeung C, Caylor J, Tsokos M, Helman L. An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Metastasis. 2000;18:261–71.

    Article  CAS  PubMed  Google Scholar 

  49. Faustino-Rocha A, Oliveira PA, Pinho-Oliveira J, Teixeira-Guedes C, Soares-Maia R, da Costa RG, et al. Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim. 2013;42:217–24.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Kyle Williams for helpful discussion throughout the study, Dr. Sterbs for her intoxicating enthusiasm during the preparation of this paper, Dr. Juan Abrahante for statistical advice, and the Clinical and Translational Science Institute (CSTI) Histology and Research Laboratory team members Dr. Colleen Forester and Lori Holm for tissue preparation and histology services. Author BAS is supported by an NIH NIAMS T32 AR050938 Musculoskeletal Training Grant. Author EJP is supported by an NIH NIAID T32 AI997313 Immunology Training Grant. This work was made possible through funding from the Sobiech Osteosarcoma Fund Award, Randy Shaver Cancer and Community Fund, University of Minnesota Foundation, Rein in Sarcoma Foundation, Aflac-AACR Career Development Award, and the Children’s Cancer Research Fund to author BSM Portions of this work were conducted in the Minnesota Nano Center, which is supported by the National Science Foundation through the National Nano Coordinated Infrastructure Network (NNCI) under Award Number ECCS-1542202. SEMA4C RNA expression results in data set #2 were in whole or part based upon data generated by the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative, phs000218, managed by the NCI. The data used are available (dbGaP accession phs000218.v21.p7). Information about TARGET can be found at http://ocg.cancer.gov/programs/target.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: BAS, DAL, BSM. Development and acquisition of data: BAS, NJS, EJP, HEB, GAS, MRC, JJP, GMD, KLB, EPR. Analysis and interpretation: BAS, NJS, DJO, DKW, JBM, DAL, BSM. Writing, review and revisions: BAS, NJS., EJP, HEB, GAS, MRC, JJP, GMD, KLB, EPR, JBM, DJ.O, DKW, DAL, BSM. Study oversight: BAS, DAL, BSM.

Corresponding author

Correspondence to Branden S. Moriarity.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smeester, B.A., Slipek, N.J., Pomeroy, E.J. et al. SEMA4C is a novel target to limit osteosarcoma growth, progression, and metastasis. Oncogene 39, 1049–1062 (2020). https://doi.org/10.1038/s41388-019-1041-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1041-x

This article is cited by

Search

Quick links