Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncogenic HOXB8 is driven by MYC-regulated super-enhancer and potentiates colorectal cancer invasiveness via BACH1

Abstract

Aberrant activation of Homeobox genes in human cancers has long been documented, whereas the mechanisms underlying remain largely obscure. Super-enhancers (SEs) act as key regulatory elements for both cell identity genes and cancer genes. Herein, we reported that SE-associated HOXB gene cluster represented a common feature of colorectal cancer (CRC) cell lines and multiple HOXB genes within this cluster were overexpressed in CRC. Among them, we found that HOXB8 was oncogenic and its activation in CRC was driven by SE instead of genetic alteration. We further demonstrated that the master transcription factor MYC preferentially occupied SEs over TEs (typical enhancers) and regulated HOXB8 transcription by binding to the active elements of its SE. HOXB8 silencing induced reversal of transcriptional signatures associated with malignant phenotypes of CRC. Mechanistically, HOXB8 interacted with a key metastasis regulator BACH1 and instigated BACH1-mediated transcriptional cascade by directly occupying and activating BACH1 gene transcription together with BACH1 itself. Lastly, the relevance of HOXB8 activation in clinical settings was strengthened by its close association with prognostic outcomes of CRC patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

RNA-seq and ChIP-seq data generated in this study have been deposited at the Gene Expression Omnibus (GEO) under accession code GSE121209.

References

  1. Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet. 2014;15:272–86.

    Article  CAS  PubMed  Google Scholar 

  2. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155:934–47.

    Article  CAS  PubMed  Google Scholar 

  4. Sengupta S, George RE. Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer. 2017;3:269–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sur I, Taipale J. The role of enhancers in cancer. Nat Rev Cancer. 2016;16:483–93.

    Article  CAS  PubMed  Google Scholar 

  6. Ke L, Zhou H, Wang C, Xiong G, Xiang Y, Ling Y, et al. Nasopharyngeal carcinoma super-enhancer-driven ETV6 correlates with prognosis. Proc Natl Acad Sci USA. 2017;114:9683–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akhtar-Zaidi B, Cowper-Sal-lari R, Corradin O, Saiakhova A, Bartels CF, Balasubramanian D, et al. Epigenomic enhancer profiling defines a signature of colon cancer. Science. 2012;336:736–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Choi PS, Francis JM, Gao GF, Campbell JD, Ramachandran A, et al. Somatic superenhancer duplications and hotspot mutations lead to oncogenic activation of the KLF5 transcription factor. Cancer Discov. 2018;8:108–25.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Choi PS, Francis JM, Imielinski M, Watanabe H, Cherniack AD, et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat Genet. 2016;48:176–82.

    Article  CAS  PubMed  Google Scholar 

  10. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346:1373–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet. 2009;41:882–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Northcott PA, Lee C, Zichner T, Stutz AM, Erkek S, Kawauchi D, et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature. 2014;511:428–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Groschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014;157:369–81.

    Article  CAS  PubMed  Google Scholar 

  14. Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning. Nat Rev Genet. 2005;6:893–904.

    Article  CAS  PubMed  Google Scholar 

  15. Mallo M, Alonso CR. The regulation of Hox gene expression during animal development. Development. 2013;140:3951–63.

    Article  CAS  PubMed  Google Scholar 

  16. Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer. 2010;10:361–71.

    Article  CAS  PubMed  Google Scholar 

  17. Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR. The pathophysiology of HOX genes and their role in cancer. J Pathol. 2005;205:154–71.

    Article  CAS  PubMed  Google Scholar 

  18. Alharbi RA, Pettengell R, Pandha HS, Morgan R. The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia. 2013;27:1000–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172:650–65.

    Article  CAS  PubMed  Google Scholar 

  20. Banerjee-Basu S, Baxevanis AD. Molecular evolution of the homeodomain family of transcription factors. Nucleic acids Res. 2001;29:3258–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blatt C, Lotem J, Sachs L. Inhibition of specific pathways of myeloid cell differentiation by an activated Hox-2.4 homeobox gene. Cell growth Differ. 1992;3:671–6.

    CAS  PubMed  Google Scholar 

  22. Vider BZ, Zimber A, Hirsch D, Estlein D, Chastre E, Prevot S, et al. Human colorectal carcinogenesis is associated with deregulation of homeobox gene expression. Biochem Biophys Res Commun. 1997;232:742–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ding WJ, Zhou M, Chen MM, Qu CY. HOXB8 promotes tumor metastasis and the epithelial-mesenchymal transition via ZEB2 targets in gastric cancer. J Cancer Res Clin Oncol. 2017;143:385–97.

    Article  CAS  PubMed  Google Scholar 

  24. Knoepfler PS, Sykes DB, Pasillas M, Kamps MP. HoxB8 requires its Pbx-interaction motif to block differentiation of primary myeloid progenitors and of most cell line models of myeloid differentiation. Oncogene. 2001;20:5440–8.

    Article  CAS  PubMed  Google Scholar 

  25. Redecke V, Wu R, Zhou J, Finkelstein D, Chaturvedi V, High AA, et al. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods. 2013;10:795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McFarland JM, Ho ZV, Kugener G, Dempster JM, Montgomery PG, Bryan JG, et al. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nat Commun. 2018; 9:4610.

  27. Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods. 2015;12:1143–9. Epub 2015/10/27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Igarashi K, Sun J. The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal. 2006;8:107–18.

    Article  CAS  PubMed  Google Scholar 

  30. Warnatz HJ, Schmidt D, Manke T, Piccini I, Sultan M, Borodina T, et al. The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle. J Biol Chem. 2011;286:23521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Igarashi K, Kurosaki T, Roychoudhuri R. BACH transcription factors in innate and adaptive immunity. Nat Rev Immunol. 2017;17:437–50.

    Article  CAS  PubMed  Google Scholar 

  32. Liang Y, Wu H, Lei R, Chong RA, Wei Y, Lu X, et al. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J Biol Chem. 2012;287:33533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu GD, Liu F, OuYang S, Zhou R, Jiang FN, Zhang B, et al. BACH1 promotes the progression of human colorectal cancer through BACH1/CXCR4 pathway. Biochem Biophys Res Commun. 2018;499:120–7.

    Article  CAS  PubMed  Google Scholar 

  34. Shajari N, Davudian S, Kazemi T, Mansoori B, Salehi S, Khaze Shahgoli V, et al. Silencing of BACH1 inhibits invasion and migration of prostate cancer cells by altering metastasis-related gene expression. Artif cells Nanomed Biotechnol. 2018;46:1495–504.

    Article  CAS  PubMed  Google Scholar 

  35. Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell. 2017;168:629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ahmadiyeh N, Pomerantz MM, Grisanzio C, Herman P, Jia L, Almendro V, et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci USA. 2010;107:9742–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Herranz D, Ambesi-Impiombato A, Palomero T, Schnell SA, Belver L, Wendorff AA, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med. 2014;20:1130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Itoh-Nakadai A, Hikota R, Muto A, Kometani K, Watanabe-Matsui M, Sato Y, et al. The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program. Nat Immunol. 2014;15:1171–80. Epub 2014/10/27

    Article  CAS  PubMed  Google Scholar 

  39. Shu XS, Zhao Y, Sun Y, Zhong L, Cheng Y, Zhang Y, et al. The epigenetic modifier PBRM1 restricts the basal activity of the innate immune system by repressing retinoic acid-inducible gene-I-like receptor signalling and is a potential prognostic biomarker for colon cancer. J Pathol. 2018;244:36–48.

    Article  CAS  PubMed  Google Scholar 

  40. Cohen AJ, Saiakhova A, Corradin O, Luppino JM, Lovrenert K, Bartels CF, et al. Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome. Nat Commun. 2017;8:14400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCleland ML, Mesh K, Lorenzana E, Chopra VS, Segal E, Watanabe C, et al. CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Investig. 2016;126:639–52.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xiong X, Zhang Y, Yan J, Jain S, Chee S, Ren B, et al. A scalable epitope tagging approach for high throughput chip-seq analysis. ACS Synth Biol. 2017;6:1034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shin H, Liu T, Manrai AK, Liu XS. CEAS: cis-regulatory element annotation system. Bioinformatics. 2009;25:2605–6.

    Article  CAS  PubMed  Google Scholar 

  44. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D, et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011;8:511–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Shenzhen Commission of Science and Innovation Programs [JCYJ20170817101008912, JCYJ20170818143305472, JCYJ20160331114230843], National Key Projects of Research and Development of China [2016YFC0904600], Natural Science Foundation of Shenzhen University for Overseas High-Caliber Personnel [827000111], National Natural Science Foundation of China [81670760] and grant from Guangdong Health Committee [B2019104]. We thank technical support from Instrumental Analysis Center of Shenzhen University (Xili Campus), and thank Mr Shikang Liu, and Ms Danhong Qiu for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

XS designed and supervised research. YY, YW, XS, XH, YS, JZ, ML, JZ, MW, WX, LZ, LL, QT, BX, and XW performed research. XS, YY, and YW analyzed data. XS, YY, and YW wrote and revised the paper.

Corresponding author

Correspondence to Xing-sheng Shu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, Y., Wang, Y., Huang, X. et al. Oncogenic HOXB8 is driven by MYC-regulated super-enhancer and potentiates colorectal cancer invasiveness via BACH1. Oncogene 39, 1004–1017 (2020). https://doi.org/10.1038/s41388-019-1013-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1013-1

This article is cited by

Search

Quick links