Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular prion protein transcriptionally regulated by NFIL3 enhances lung cancer cell lamellipodium formation and migration through JNK signaling

Abstract

Tumor invasion and metastasis are the major causes of treatment failure and mortality in lung cancer patients. In this study, we identified a group of genes with differential expression in in situ and invasive lung adenocarcinoma tissues by expression profiling; among these genes we further characterized the association of the upregulation of PRNP, the gene encoding cellular Prion protein (PrPc), with lung adenocarcinoma invasiveness. Immunohistochemistry on clinical specimens showed an association of PrPc expression with invasive but not in situ lung adenocarcinoma. Consistently, the expression of PrPc was higher in the highly invasive than in the lowly invasive lung adenocarcinoma cell lines. Knockdown of PrPc expression in cultured lung adenocarcinoma cells decreased their lamellipodium formation, in vitro migration and invasion, and in vivo experimental lung metastasis. Phosphorylation of JNKs was found to correlate with PrPc expression and the inhibition of JNKs suppressed the PrPc-induced up-regulation of lamellipodium formation, cell migration, and invasion. Moreover, we identified the nuclear factor, interleukin 3 regulated (NFIL3) protein as a transcriptional activator of the PRNP promoter. Accordingly, NFIL3 promoted lung cancer cell migration and invasion in a PrPc-dependent manner. High NFIL3 expression in clinical specimens of lung adenocarcinoma was also associated with tumor invasiveness. Overall, our observations suggest that the NFIL3/PrPc axis, through regulating lamellipodium formation and cell mobility via JNK signaling, plays a critical role in lung cancer invasiveness and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  PubMed  Google Scholar 

  3. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martins VR, Linden R, Prado MA, Walz R, Sakamoto AC, Izquierdo I, et al. Cellular prion protein: on the road for functions. FEBS Lett. 2002;512:25–28.

    Article  CAS  PubMed  Google Scholar 

  5. Mehrpour M, Codogno P. Prion protein: from physiology to cancer biology. Cancer Lett. 2010;290:1–23.

    Article  CAS  PubMed  Google Scholar 

  6. Mattei V, Garofalo T, Misasi R, Circella A, Manganelli V, Lucania G, et al. Prion protein is a component of the multimolecular signaling complex involved in T cell activation. FEBS Lett. 2004;560:14–18.

    Article  CAS  PubMed  Google Scholar 

  7. Bounhar Y, Zhang Y, Goodyer CG, LeBlanc A. Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem. 2001;276:39145–9.

    Article  CAS  PubMed  Google Scholar 

  8. Solis GP, Radon Y, Sempou E, Jechow K, Stuermer CA, Malaga-Trillo E. Conserved roles of the prion protein domains on subcellular localization and cell-cell adhesion. PLoS ONE. 2013;8:e70327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morel E, Fouquet S, Chateau D, Yvernault L, Frobert Y, Pincon-Raymond M, et al. The cellular prion protein PrPc is expressed in human enterocytes in cell-cell junctional domains. J Biol Chem. 2004;279:1499–505.

    Article  CAS  PubMed  Google Scholar 

  10. Herms J, Tings T, Gall S, Madlung A, Giese A, Siebert H, et al. Evidence of presynaptic location and function of the prion protein. J Neurosci. 1999;19:8866–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang JH, Du JP, Zhang YH, Zhao XJ, Fan RY, Wang ZH, et al. Dynamic changes and surveillance function of prion protein expression in gastric cancer drug resistance. World J Gastroenterol. 2011;17:3986–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng Y, Tao L, Xu J, Li Q, Yu J, Jin Y, et al. CD44/cellular prion protein interact in multidrug resistant breast cancer cells and correlate with responses to neoadjuvant chemotherapy in breast cancer patients. Mol Carcinog. 2014;53:686–97.

    Article  CAS  PubMed  Google Scholar 

  13. Chieng CK, Say YH. Cellular prion protein contributes to LS 174T colon cancer cell carcinogenesis by increasing invasiveness and resistance against doxorubicin-induced apoptosis. Tumour Biol. 2015;36:8107–20.

    Article  CAS  PubMed  Google Scholar 

  14. Li QQ, Sun YP, Ruan CP, Xu XY, Ge JH, He J, et al. Cellular prion protein promotes glucose uptake through the Fyn-HIF-2alpha-Glut1 pathway to support colorectal cancer cell survival. Cancer Sci. 2011;102:400–6.

    Article  CAS  PubMed  Google Scholar 

  15. Du L, Rao G, Wang H, Li B, Tian W, Cui J, et al. CD44-positive cancer stem cells expressing cellular prion protein contribute to metastatic capacity in colorectal cancer. Cancer Res. 2013;73:2682–94.

    Article  CAS  PubMed  Google Scholar 

  16. Pan Y, Zhao L, Liang J, Liu J, Shi Y, Liu N, et al. Cellular prion protein promotes invasion and metastasis of gastric cancer. FASEB J. 2006;20:1886–8.

    Article  CAS  PubMed  Google Scholar 

  17. Yap YH, Say YH. Resistance against tumour necrosis factor alpha apoptosis by the cellular prion protein is cell-specific for oral, colon and kidney cancer cell lines. Cell Biol Int. 2012;36:273–7.

    Article  CAS  PubMed  Google Scholar 

  18. Yap YH, Say YH. Resistance against apoptosis by the cellular prion protein is dependent on its glycosylation status in oral HSC-2 and colon LS 174T cancer cells. Cancer Lett. 2011;306:111–9.

    Article  CAS  PubMed  Google Scholar 

  19. Bellingham SA, Coleman LA, Masters CL, Camakaris J, Hill AF. Regulation of prion gene expression by transcription factors SP1 and metal transcription factor-1. J Biol Chem. 2009;284:1291–301.

    Article  CAS  PubMed  Google Scholar 

  20. Liu T, Yi W, Feng B, Zhou Z, Xiao G. IGF-1-induced enhancement of PRNP expression depends on the negative regulation of transcription factor FOXO3a. PLoS ONE. 2013;8:e71896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cichon AC, Brown DR. Nrf-2 regulation of prion protein expression is independent of oxidative stress. Mol Cell Neurosci. 2014;63:31–7.

    Article  CAS  PubMed  Google Scholar 

  22. Dery MA, Jodoin J, Ursini-Siegel J, Aleynikova O, Ferrario C, Hassan S, et al. Endoplasmic reticulum stress induces PRNP prion protein gene expression in breast cancer. Breast Cancer Res. 2013;15:R22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Misiewicz M, Dery MA, Foveau B, Jodoin J, Ruths D, LeBlanc AC. Identification of a novel endoplasmic reticulum stress response element regulated by XBP1. J Biol Chem. 2013;288:20378–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cowell IG, Skinner A, Hurst HC. Transcriptional repression by a novel member of the bZIP family of transcription factors. Mol Cell Biol. 1992;12:3070–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang W, Zhang J, Kornuc M, Kwan K, Frank R, Nimer SD. Molecular cloning and characterization of NF-IL3A, a transcriptional activator of the human interleukin-3 promoter. Mol Cell Biol. 1995;15:6055–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohno T, Onishi Y, Ishida N. A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res. 2007;35:648–55.

    Article  CAS  PubMed  Google Scholar 

  27. Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K, Grosveld G, et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med. 2009;206:2977–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seillet C, Huntington ND, Gangatirkar P, Axelsson E, Minnich M, Brady HJ, et al. Differential requirement for Nfil3 during NK cell development. J Immunol. 2014;192:2667–76.

    Article  CAS  PubMed  Google Scholar 

  29. Ikushima S, Inukai T, Inaba T, Nimer SD, Cleveland JL, Look AT. Pivotal role for the NFIL3/E4BP4 transcription factor in interleukin 3-mediated survival of pro-B lymphocytes. Proc Natl Acad Sci USA. 1997;94:2609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keniry M, Pires MM, Mense S, Lefebvre C, Gan B, Justiano K, et al. Survival factor NFIL3 restricts FOXO-induced gene expression in cancer. Genes Dev. 2013;27:916–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qi J, Yu Y, Akilli Ozturk O, Holland JD, Besser D, Fritzmann J, et al. New Wnt/beta-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals. Gut. 2016;65:1690–701.

    Article  CAS  PubMed  Google Scholar 

  32. Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol. 1997;17:353–60.

    Article  CAS  PubMed  Google Scholar 

  33. Gil M, Kim YK, Kim KE, Kim W, Park CS, Lee KJ. Cellular prion protein regulates invasion and migration of breast cancer cells through MMP-9 activity. Biochem Biophys Res Commun. 2016;470:213–9.

    Article  CAS  PubMed  Google Scholar 

  34. Takabayashi T, Xie MJ, Takeuchi S, Kawasaki M, Yagi H, Okamoto M, et al. LL5beta directs the translocation of filamin A and SHIP2 to sites of phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P3) accumulation, and PtdIns(3,4,5)P3 localization is mutually modified by co-recruited SHIP2. J Biol Chem. 2010;285:16155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Danson CM, Pocha SM, Bloomberg GB, Cory GO. Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity. J Cell Sci. 2007;120:4144–54.

    Article  CAS  PubMed  Google Scholar 

  36. Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci. 2004;117:4619–28.

    Article  CAS  PubMed  Google Scholar 

  37. Kuribara R, Kinoshita T, Miyajima A, Shinjyo T, Yoshihara T, Inukai T, et al. Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-xL, regulate the survival of murine pro-B lymphocytes. Mol Cell Biol. 1999;19:2754–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shaul YD, Yuan B, Thiru P, Nutter-Upham A, McCallum S, Lanzkron C, et al. MERAV: a tool for comparing gene expression across human tissues and cell types. Nucleic Acids Res. 2016;44:D560–566.

    Article  CAS  PubMed  Google Scholar 

  39. Ehrlich JS, Hansen MD, Nelson WJ. Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell-cell adhesion. Dev Cell. 2002;3:259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim HJ, Choi HS, Park JH, Kim MJ, Lee HG, Petersen RB, et al. Regulation of RhoA activity by the cellular prion protein. Cell Death Dis. 2017;8:e2668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dovas A, Couchman JR. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J. 2005;390:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129:865–77.

    Article  CAS  PubMed  Google Scholar 

  43. Satoh J, Obayashi S, Misawa T, Sumiyoshi K, Oosumi K, Tabunoki H. Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol Appl Neurobiol. 2009;35:16–35.

    Article  CAS  PubMed  Google Scholar 

  44. Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol. 2005;169:341–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carulla P, Bribian A, Rangel A, Gavin R, Ferrer I, Caelles C, et al. Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell. 2011;22:3041–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lopes MH, Hajj GN, Muras AG, Mancini GL, Castro RM, Ribeiro KC, et al. Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci. 2005;25:11330–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burgess ST, Shen C, Ferguson LA, O’Neill GT, Docherty K, Hunter N, et al. Identification of adjacent binding sites for the YY1 and E4BP4 transcription factors in the ovine PrP (Prion) gene promoter. J Biol Chem. 2009;284:6716–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goswami CP, Nakshatri H. PROGgeneV2: enhancements on the existing database. BMC Cancer. 2014;14:970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Qi J, Yu Y, Akilli Ozturk O, Holland JD, Besser D, Fritzmann J, et al. New Wnt/beta-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals. Gut 2016;65:699–701.

    Article  PubMed  CAS  Google Scholar 

  50. Chen JJ, Peck K, Hong TM, Yang SC, Sher YP, Shih JY, et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Res. 2001;61:5223–30.

    CAS  PubMed  Google Scholar 

  51. Lin J, Zhou T, Wang J. Solution structure of the human HSPC280 protein. Protein Sci: a Publ Protein Soc. 2011;20:216–23.

    Article  CAS  Google Scholar 

  52. Chou TY, Chen WC, Lee AC, Hung SM, Shih NY, Chen MY. Clusterin silencing in human lung adenocarcinoma cells induces a mesenchymal-to-epithelial transition through modulating the ERK/Slug pathway. Cell Signal. 2009;21:704–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Pan-Chyr Yang for providing lung adenocarcinoma cell lines CL1-5F4, CL1-1 and CL1-5, Dr. Sin-Lian Doong for providing expressing vector pSuper-Hygromycin B and Dr. Ann-Ping Tsou for providing luciferase reporter plasmids.

Funding:

This work was supported by grant 102-2320-B-010-005-MY3 from the Ministry of Science and Technology and grants VGH94-286, V98C1-102, V99C1-187, V100C-082 and V101C-009 from Taipei Veterans General Hospital, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei-Yu Chen or Teh-Ying Chou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SC., Lin, CH., Shih, NC. et al. Cellular prion protein transcriptionally regulated by NFIL3 enhances lung cancer cell lamellipodium formation and migration through JNK signaling. Oncogene 39, 385–398 (2020). https://doi.org/10.1038/s41388-019-0994-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0994-0

This article is cited by

Search

Quick links