Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rho guanine nucleotide exchange factor ARHGEF10 is a putative tumor suppressor in pancreatic ductal adenocarcinoma

Abstract

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human cancers, with 5-year patient survival rates of <5%. Activating mutations in KRAS are the predominant oncogenic drivers of PDAC but are accompanied by additional lower frequency genetic alterations. Our group previously identified the guanine nucleotide exchange factor ARHGEF10 in a genomic screen for genes with copy number alterations that may synergize with oncogenic KRAS to promote PDAC carcinogenesis. In the present study we show that ARHGEF10 possesses putative tumor suppressor function in PDAC. ARHGEF10 expression is reduced in over 70% of PDAC cell lines, and copy number loss is documented in more than 30% of PDAC patient-derived xenografts. Loss of ARHGEF10 expression enhanced subcutaneous tumor growth in mouse models, while its exogenous expression greatly impaired tumorigenesis. Loss of ARHGEF10 expression also increased in vitro proliferation, invasion, and motility of PDAC cell lines, and enhanced their metastatic spread in orthotopic mouse models. Treatment of ARHGEF10-depleted cells with the inhibitor dasatinib reduced levels of phospho Src kinase and attenuated motility and invasion in vitro. Together, our data indicate that ARHGEF10 may function as a tumor suppressor in PDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66:7–30.

    PubMed  Google Scholar 

  2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.

    CAS  PubMed  Google Scholar 

  3. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371:2140–1.

    PubMed  Google Scholar 

  4. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491:399–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Radulovich N, Leung L, Ibrahimov E, Navab R, Sakashita S, Zhu CQ, et al. Coiled-coil domain containing 68 (CCDC68) demonstrates a tumor-suppressive role in pancreatic ductal adenocarcinoma. Oncogene. 2015;34:4238–47.

    CAS  PubMed  Google Scholar 

  8. Mohl M, Winkler S, Wieland T, Lutz S. Gef10 - the third member of a Rho-specific guanine nucleotide exchange factor subfamily with unusual protein architecture. Naunyn Schmiede Arch Pharm. 2006;373:333–41.

    CAS  Google Scholar 

  9. Aoki T, Ueda S, Kataoka T, Satoh T. Regulation of mitotic spindle formation by the RhoA guanine nucleotide exchange factor ARHGEF10. BMC Cell Biol. 2009;10:56.

    PubMed  PubMed Central  Google Scholar 

  10. Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA, et al. Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia. 2005;7:556–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cooke SL, Pole JC, Chin SF, Ellis IO, Caldas C, Edwards PA. High-resolution array CGH clarifies events occurring on 8p in carcinogenesis. BMC Cancer. 2008;8:288.

    PubMed  PubMed Central  Google Scholar 

  12. Harada T, Chelala C, Bhakta V, Chaplin T, Caulee K, Baril P, et al. Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene. 2008;27:1951–60.

    CAS  PubMed  Google Scholar 

  13. Harada T, Chelala C, Crnogorac-Jurcevic T, Lemoine NR. Genome-wide analysis of pancreatic cancer using microarray-based techniques. Pancreatology. 2009;9:13–24.

    CAS  PubMed  Google Scholar 

  14. Williams SV, Platt FM, Hurst CD, Aveyard JS, Taylor CF, Pole JC, et al. High-resolution analysis of genomic alterationon chromosome arm 8p in urothelial carcinoma. Genes Chromosomes Cancer. 2010;49:642–59.

    CAS  PubMed  Google Scholar 

  15. Xue W, Kitzing T, Roessler S, Zuber J, Krasnitz A, Schultz N, et al. A cluster of cooperating tumour-suppressor genes candidates in chromosomal deletions. Proc Natl Acad Sci USA. 2012;109:8212–7.

    CAS  PubMed  Google Scholar 

  16. The Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma cancer. Cancer Cell. 2017;32:185–203.e13.

    PubMed Central  Google Scholar 

  17. International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, et al. International network of cancer genome projects. Nature. 2010;464:993–8.

    Google Scholar 

  18. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  PubMed  Google Scholar 

  19. Wang N, Liang H, Zhou Y, Wang C, Zhang S, Pan Y, et al. miRNA-203 suppresses proliferation and migration and promotes the apoptosis of lung cancer cells by targeting SRC. PLoS One. 2014;9:e105570.

    PubMed  PubMed Central  Google Scholar 

  20. Morton JP, Karim SA, Graham K, Timpson P, Jamieson N, Athineos D, et al. Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology. 2010;139:292–303.

    CAS  PubMed  Google Scholar 

  21. Cai Y, Crowther J, Pastor T, Abbasi Asbagh L, Baietti MF, De Troyer M, et al. Loss of chromosome 8p governs tumor progression and drug response altering lipid metabolism. Cancer Cell. 2016;29:751–66.

    CAS  PubMed  Google Scholar 

  22. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70:389–99.

    CAS  PubMed  Google Scholar 

  23. Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, et al. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumour progression in ovarian carcinoma. Lab Investig. 2003;83:861–70.

    CAS  PubMed  Google Scholar 

  24. Barrio-Real L, Kazanietz MG. Rho GEFs and cancer: linking gene expression and metastatic dissemination. Sci Signal. 2012;5:pe43.

    PubMed  Google Scholar 

  25. Konstantinidou G, Ramadori G, Torti F, Kangasniemi K, Ramirez RE, Cai Y, et al. RHOA-FAK is a required signaling axis for the maintenance of KRAS-driven lung adenocarcinomas. Cancer Discov. 2013;3:444–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zandvakili I, Lin Y, Morris JC, Zheng Y. Rho GTPases: anti- or pro-neoplastic targets? Oncogene. 2017;36:3213–22.

    CAS  PubMed  Google Scholar 

  27. Lazer G, Idelchuk Y, Schapira V, Pikarsky E, Katzav S. The haematopoietic specific signal transducer Vav1 is aberrantly expressed in lung cancer and plays a role in tumorigenesis. J Pathol. 2009;219:25–34.

    CAS  PubMed  Google Scholar 

  28. Razidlo GL, Magnine C, Sletten AC, Hurley RM, Almada LL, Fernandez-Zapico ME, et al. Targeting pancreatic cancer metastasis by inhibition of Vav1, a driver of tumour cell invasion. Cancer Res. 2015;75:2907–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin H, Li T, Ding Y, Deng Y, Zhang W, Yang H, et al. Methylation status of T-lymphoma invasion and metastasis 1 promoter and its overexpression in colorectal cancer. Hum Pathol. 2011;42:541–51.

    CAS  PubMed  Google Scholar 

  30. Qin J, Xie Y, Wang B, Hoshino M, Wolff DW, Zhao J, et al. Upregulation of P1P3-dependent Rac exchanger 1 (P-rex1) promotes prostate cancer metastasis. Oncogene. 2009;28:1853–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Ax, Cerniglia GJ, Bernhard EJ, Prendergast GC. RhoB is required to mediate apoptosis in neoplastically transformed cells after DNA damage. Proc Natl Acad Sci USA. 2001;98:6192–7.

    Google Scholar 

  32. Adnane J, Muro-Cacho C, Mathews L, Sebti SM, Muñoz-Antonia T. Suppression of rho B expression in invasive carcinoma from head and neck cancer patients. Clin Cancer Res. 2002;8:2225–32.

    CAS  PubMed  Google Scholar 

  33. Mazieres J, Antonia T, Daste G, Muro-Cacho C, Berchery D, Tillement V, et al. Loss of RhoB expression in human lung cancer progression. Clin Cancer Res. 2004;10:2742–50.

    CAS  PubMed  Google Scholar 

  34. Marlow LA, Reynolds LA, Cleland AS, Cooper SJ, Gumz ML, Kurakata S, et al. Reactivation of suppressed RhoB is a critical step for the inhibition of anaplastic thyroid cancer growth. Cancer Res. 2009;69:1536–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou J, Zhu Y, Zhang G, Liu N, Sun L, Liu M, et al. A distinct role of RhoB in gastric cancer suppression. Int J Cancer. 2011;128:1057–68.

    CAS  PubMed  Google Scholar 

  36. Kazerounian S, Gerald D, Huang M, Chin YR, Udayakumar D, Zheng N, et al. RhoB differentially controls Akt function in tumour cells and stromal endothelial cells during breast cancer tumorigenesis. Cancer Res. 2013;73:50–61.

    CAS  PubMed  Google Scholar 

  37. Tan Y, Yin H, Zhang H, Fang J, Zheng W, Li D, et al. Sp1-driven up-regulation of miR-119a decreases RHOB and promotes pancreatic cancer. Oncotarget. 2015;6:17391–403.

    PubMed  PubMed Central  Google Scholar 

  38. Robles-Valero J, Lorenzo-Martín LF, Menacho-Márquez M, Fernández-Pisonero I, Abad A, Camós M, et al. A paradoxical tumor-suppressor role for the Rac1 exchange factor Vav1 in T cell acute lymphoblastic leukemia. Cancer Cell. 2017;32:608–.e9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Summy JM, Trevino JG, Baker CH, Gallick GE. C-Src regulates constitutive and EGF-mediated VEGF expression in pancreatic tumor cells through activation of phosphatidyl inositol-3 kinase and p38 MAPK. Pancreas. 2005;31:263–74.

    CAS  PubMed  Google Scholar 

  40. Lopez J, Hesling C, Prudent J, Popgeorgiev N, Gadet R, Mikaelian I, et al. Src tyrosine kinase inhibits apoptosis through the Erk1/2-dependent degradation of the death accelerator Bik. Cell Death Differ. 2012;19:1459–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lutz MP, Esser IB, Flossmann-Kast BB, Vogelmann R, Lührs H, Friess H, et al. Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem Biophys Res Commun. 1998;243:503–8.

    CAS  PubMed  Google Scholar 

  42. Nagaraj NS, Smith JJ, Revetta F, Washington MK, Merchant NB. Targeted inhibition of SRC kinase signaling attenuates pancreatic tumorigenesis. Mol Cancer Ther. 2010;9:2322–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shields DJ, Murphy EA, Desgrosellier JS, Mielgo A, Lau SK, Barnes LA, et al. Oncogenic Ras/Src cooperativity in pancreatic neoplasia. Oncogene. 2011;30:2123–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Witkiewicz AK, Balaji U, Eslinger C, McMillan E, Conway W, Posner B, et al. Integrated patient-derived models delineate individualized therapeutic vulnerabilities of pancreatic cancer. Cell Rep. 2016;16:2017–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi H, Zhang CJ, Chen GY, Yao SQ. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes. J Am Chem Soc. 2012;134:3001–14.

    CAS  PubMed  Google Scholar 

  46. Furukawa T, Duguid WP, Rosenberg L, Viallet J, Galloway DA, Tsao MS. Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol. 1996;148:1763–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Qian J, Niu J, Li M, Chiao PJ, Tsao MS. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis. Cancer Res. 2005;12:5045–53.

    Google Scholar 

  48. Lohse I, Lourenco C, Ibrahimov E, Pintilie M, Tsao MS, Hedley DW. Assessment of hypoxia in the stroma of patient-derived pancreatic tumor xenografts. Cancers. 2014;6:459–71.

    PubMed  PubMed Central  Google Scholar 

  49. Mak AB, Ni Z, Hewel JA, Chen GI, Zhong G, Karamboulas K, et al. A lentiviral functional proteomics approach identifies chromatin remodeling complexes important for the induction of pluripotency. Mol Cell Proteom. 2010;9:811–23.

    CAS  Google Scholar 

  50. Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11:36–42.

    Google Scholar 

Download references

Acknowledgements

We thank Ming Li for his assistance with orthotopic implantation, Jing Xu for her assistance with immunohistochemistry, and Quan Li for his assistance with the analysis of gene expression data. This work was supported by the Canadian Cancer Society grant #700809, the Canadian Institutes of Health Research Foundation Scheme grant FDN-148395, and the Ontario Ministry of Health and Long Term Care. TW was supported by the Terry Fox Foundation Training Program in Molecular Pathology of Cancer at CIHR (STP 53912). Dr Tsao is the M. Qasim Choksi Chair in Lung Cancer Translational Research. The microarray data reported in this paper have been deposited into the Gene Expression Omnibus (GEO) database (accession number GSE131859).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Sound Tsao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J., Radulovich, N., Wang, T. et al. Rho guanine nucleotide exchange factor ARHGEF10 is a putative tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene 39, 308–321 (2020). https://doi.org/10.1038/s41388-019-0985-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0985-1

This article is cited by

Search

Quick links