Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYO1D binds with kinase domain of the EGFR family to anchor them to plasma membrane before their activation and contributes carcinogenesis

A Correction to this article was published on 21 April 2021

This article has been updated

Abstract

The cell surface receptor tyrosine kinase (RTK) exists in a dynamic state, however, it remains unknown how single membrane-spanning RTK proteins are retained in the plasma membrane before their activation. This study was undertaken to investigate how RTK proteins are anchored in the plasma membrane before they bind with their respective extracellular ligands for activation through protein–protein interaction, co-localization, and functional phenotype studies. Here we show that unconventional myosin-I MYO1D functions to hold members of the EGFR family (except ErbB3) at the plasma membrane. MYO1D binds only with unphosphorylated EGFRs and anchors them to underlying actin cytoskeleton at the plasma membrane. The C-terminal end region of the MYO1D tail domain containing a β-meander motif is critical for direct binding with kinase domain of the EGFR family, and expression of the tail domain alone suppresses the oncogenic action of full-length MYO1D. Overexpressed MYO1D increases colorectal and breast cancer cell motility and viability through upregulating EGFR level, and thereby promotes colorectal tumor progression in a syngeneic mouse model. MYO1D is upregulated in human colorectal cancer tissues from advanced stages. Collectively, molecular motor MYO1D plays a distinct role in the dynamic regulation of EGFR family levels by holding them at the plasma membrane before their activation. Overexpressed MYO1D contributes to colorectal carcinogenesis possibly as a novel oncogene and thus may serve as an additional target for suppression of RTK signaling in cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Sweeney C, Carraway KL 3rd. Negative regulation of ErbB family receptor tyrosine kinases. Br J Cancer. 2004;90:289–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fry WH, Kotelawala L, Sweeney C, Carraway KL 3rd. Mechanisms of ErbB receptor negative regulation and relevance in cancer. Exp Cell Res. 2009;315:697–706.

    CAS  PubMed  Google Scholar 

  3. Xu AM, Huang PH. Receptor tyrosine kinase coactivation networks in cancer. Cancer Res. 2010;70:3857–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Casaletto JB, McClatchey AI. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer. 2012;12:387–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Goh LK, Sorkin A. Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol. 2013;5:a017459.

    PubMed  PubMed Central  Google Scholar 

  6. Bergeron JJ, Di Guglielmo GM, Dahan S, Dominguez M, Posner BI. Spatial and temporal regulation of receptor tyrosine kinase activation and intracellular signal transduction. Annu Rev Biochem. 2016;85:573–97.

    CAS  PubMed  Google Scholar 

  7. McConnell RE, Tyska MJ. Leveraging the membrane—cytoskeleton interface with myosin-1. Trends Cell Biol. 2010;20:418–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Barylko B, Binns DD, Albanesi JP. Regulation of the enzymatic and motor activities of myosin I. Biochim Biophys Acta. 2000;1496:23–35.

    CAS  PubMed  Google Scholar 

  9. Barylko B, Jung G, Albanesi JP. Structure, function, and regulation of myosin 1C. Acta Biochim Polon. 2005;52:373–80.

    CAS  PubMed  Google Scholar 

  10. Ouderkirk JL, Krendel M. Non-muscle myosins in tumor progression, cancer cell invasion, and metastasis. Cytoskelet. 2014;71:447–63.

    CAS  Google Scholar 

  11. Mermall V, Post PL, Mooseker MS. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science. 1998;279:527–33.

    CAS  PubMed  Google Scholar 

  12. Kim JH, Wang A, Conti MA, Adelstein RS. Nonmuscle myosin II is required for internalization of the epidermal growth factor receptor and modulation of downstream signaling. J Biol Chem. 2012;287:27345–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chandrasekar I, Goeckeler ZM, Turney SG, Wang P, Wysolmerski RB, Adelstein RS, et al. Nonmuscle myosin II is a critical regulator of clathrin-mediated endocytosis. Traffic. 2014;15:418–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee JH, Park SR, Chay KO, Seo YW, Kook H, Ahn KY, et al. KAI1 COOH-terminal interacting tetraspanin (KITENIN), a member of the tetraspanin family, interacts with KAI1, a tumor metastasis suppressor, and enhances metastasis of cancer. Cancer Res. 2004;64:4235–43.

    CAS  PubMed  Google Scholar 

  15. Lee JH, Cho ES, Kim MY, Seo YW, Kho DH, Chung IJ, et al. Suppression of progression and metastasis of established colon tumors in mice by intravenous delivery of short interfering RNA targeting KITENIN, a metastasis-enhancing protein. Cancer Res. 2005;65:8993–9003.

    CAS  PubMed  Google Scholar 

  16. Kho DH, Bae JA, Lee JH, Cho HJ, Cho SH, Seo YW, et al. KITENIN recruits Dishevelled/PKC delta to form a functional complex and controls the migration and invasiveness of colorectal cancer cells. Gut. 2009;58:509–19.

    CAS  PubMed  Google Scholar 

  17. Bae JA, Yoon S, Park SY, Lee JH, Hwang JE, Kim H, et al. An unconventional KITENIN/ErbB4-mediated downstream signal of EGF upregulates c-Jun and the invasiveness of colorectal cancer cells. Clin Cancer Res. 2014;20:4115–28.

    CAS  PubMed  Google Scholar 

  18. Gillespie PG, Albanesi JP, Bahler M, Bement WM, Berg JS, Burgess DR, et al. Myosin-I nomenclature. J Cell Biol. 2001;155:703–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bahler M, Kroschewski R, Stoffler HE, Behrmann T. Rat myr 4 defines a novel subclass of myosin I: identification, distribution, localization, and mapping of calmodulin-binding sites with differential calcium sensitivity. J Cell Biol. 1994;126:375–89.

    CAS  PubMed  Google Scholar 

  20. Huber LA, Fialka I, Paiha K, Hunziker W, Sacks DB, Bahler M, et al. Both calmodulin and the unconventional myosin Myr4 regulate membrane trafficking along the recycling pathway of MDCK cells. Traffic. 2000;1:494–503.

    CAS  PubMed  Google Scholar 

  21. Yamazaki R, Ishibashi T, Baba H, Yamaguchi Y. Knockdown of Unconventional Myosin ID Expression Induced Morphological Change in Oligodendrocytes. ASN Neuro. 2016;8:1759091416669609.

    PubMed  PubMed Central  Google Scholar 

  22. Hegan PS, Ostertag E, Geurts AM, Mooseker MS. Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells. Cytoskelet. 2015;72:503–16.

    CAS  Google Scholar 

  23. Bose A, Guilherme A, Robida SI, Nicoloro SM, Zhou QL, Jiang ZY, et al. Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature. 2002;420:821–4.

    CAS  PubMed  Google Scholar 

  24. Arif E, Wagner MC, Johnstone DB, Wong HN, George B, Pruthi PA, et al. Motor protein Myo1c is a podocyte protein that facilitates the transport of slit diaphragm protein Neph1 to the podocyte membrane. Mol Cell Biol. 2011;31:2134–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tiwari A, Jung JJ, Inamdar SM, Nihalani D, Choudhury A. The myosin motor Myo1c is required for VEGFR2 delivery to the cell surface and for angiogenic signaling. Am J Physiol Heart Circ Physiol. 2013;304:H687–96.

    CAS  PubMed  Google Scholar 

  26. Visuttijai K, Pettersson J, Mehrbani Azar Y, van den Bout I, Orndal C, Marcickiewicz J, et al. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT. PLoS One. 2016;11:e0164063.

    PubMed  PubMed Central  Google Scholar 

  27. Ouyang X, Gulliford T, Huang G, Epstein RJ. Transforming growth factor-alpha short-circuits downregulation of the epidermal growth factor receptor. J Cell Physiol. 1999;179:52–7.

    CAS  PubMed  Google Scholar 

  28. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell. 2006;10:839–50.

    CAS  PubMed  Google Scholar 

  29. Schnitzer JE, Oh P, Pinney E, Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol. 1994;127:1217–32.

    CAS  PubMed  Google Scholar 

  30. Dutta D, Donaldson JG. Search for inhibitors of endocytosis: Intended specificity and unintended consequences. Cell Logist. 2012;2:203–8.

    PubMed  PubMed Central  Google Scholar 

  31. Zeng F, Xu J, Harris RC. Nedd4 mediates ErbB4 JM-a/CYT-1 ICD ubiquitination and degradation in MDCK II cells. FASEB J. 2009;23:1935–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Almeida CG, Yamada A, Tenza D, Louvard D, Raposo G, Coudrier E. Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network. Nat Cell Biol. 2011;13:779–89.

    CAS  PubMed  Google Scholar 

  33. Komaba S, Coluccio LM. Myosin 1b Regulates Amino Acid Transport by Associating Transporters with the Apical Plasma Membrane of Kidney Cells. PLoS One. 2015;10:e0138012.

    PubMed  PubMed Central  Google Scholar 

  34. Fang Y. Total internal reflection fluorescence quantification of receptor pharmacology. Biosens. 2015;5:223–40.

    Google Scholar 

  35. Zinchuk V, Wu Y, Grossenbacher-Zinchuk O. Bridging the gap between qualitative and quantitative colocalization results in fluorescence microscopy studies. Sci Rep. 2013;3:1365.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Adams RJ, Pollard TD. Binding of myosin I to membrane lipids. Nature. 1989;340:565–8.

    CAS  PubMed  Google Scholar 

  37. Krendel M, Mooseker MS. Myosins: tails (and heads) of functional diversity. Physiol. 2005;20:239–51.

    CAS  Google Scholar 

  38. Lu Q, Li J, Zhang M. Cargo recognition and cargo-mediated regulation of unconventional myosins. Acc Chem Res. 2014;47:3061–70.

    CAS  PubMed  Google Scholar 

  39. Li J, Lu Q, Zhang M. Structural basis of cargo recognition by unconventional myosins in cellular trafficking. Traffic. 2016;17:822–38.

    CAS  PubMed  Google Scholar 

  40. Hokanson DE, Laakso JM, Lin T, Sept D, Ostap EM. Myo1c binds phosphoinositides through a putative pleckstrin homology domain. Mol Biol Cell. 2006;17:4856–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Patino-Lopez G, Aravind L, Dong X, Kruhlak MJ, Ostap EM, Shaw S. Myosin 1G is an abundant class I myosin in lymphocytes whose localization at the plasma membrane depends on its ancient divergent pleckstrin homology (PH) domain (Myo1PH). J Biol Chem. 2010;285:8675–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mazerik JN, Kraft LJ, Kenworthy AK, Tyska MJ. Motor and tail homology 1 (Th1) domains antagonistically control myosin-1 dynamics. Biophys J. 2014;106:649–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Valley CC, Lidke KA, Lidke DS. The spatiotemporal organization of ErbB receptors: insights from microscopy. Cold Spring Harb Perspect Biol. 2014;6:a020735.

    PubMed  PubMed Central  Google Scholar 

  44. Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol. 2010;7:493–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosenzweig SA. Acquired resistance to drugs targeting receptor tyrosine kinases. Biochem Pharmacol. 2012;83:1041–8.

    CAS  PubMed  Google Scholar 

  46. Maina F. Strategies to overcome drug resistance of receptor tyrosine kinaseaddicted cancer cells. Curr Med Chem. 2014;21:1607–17.

    CAS  PubMed  Google Scholar 

  47. Vouri M, Hafizi S. TAM Receptor Tyrosine Kinases in Cancer Drug Resistance. Cancer Res. 2017;77:2775–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea grant (NRF-2018R1A5A2024181, NRF-2017R1A2B2002040) funded by the Korea government (MSIP). KYS (NRF-2017R1A6A3A11031332) and JAB (NRF-2015R1C1A2A01052689) were partly supported by the by the National Research Foundation of Korea grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Keun Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Following the publication of this article, the authors noted three invasion images in Figure 7 were repeated; the two images in Fig 7a (EV, WT) and one image in Fig 7b (TH) were repeated in Fig 7c (EV, WT, TH).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, YS., Bae, J.A., Kim, K.Y. et al. MYO1D binds with kinase domain of the EGFR family to anchor them to plasma membrane before their activation and contributes carcinogenesis. Oncogene 38, 7416–7432 (2019). https://doi.org/10.1038/s41388-019-0954-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0954-8

This article is cited by

Search

Quick links