Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PTPN3 suppresses lung cancer cell invasiveness by counteracting Src-mediated DAAM1 activation and actin polymerization

Abstract

Cancer cell migration plays a crucial role during the metastatic process. Reversible tyrosine phosphorylation by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) have been implicated in the regulation of cancer cell migration and invasion. However, the underlying mechanisms have not been fully elucidated. Here, we show that depletion of the FERM and PDZ domain-containing protein tyrosine phosphatase PTPN3 enhances lung cancer cell migration/invasion and metastasis by promoting actin filament assembly and focal adhesion dynamics. We further identified Src and DAAM1 (dishevelled associated activator of morphogenesis 1) as interactors of PTPN3. DAAM1 is a formin-like protein involved in the regulation of actin cytoskeletal remodeling. PTPN3 inhibits Src activity and Src-mediated phosphorylation of Tyr652 on DAAM1. The tyrosine phosphorylation of DAAM1 is essential for DAAM1 homodimer formation and actin polymerization. Ectopic expression of a DAAM1 phosphodeficient mutant inhibited F-actin assembly and suppressed lung cancer cell migration and invasion. Our findings reveal a novel mechanism by which reversible tyrosine phosphorylation of DAAM1 by Src and PTPN3 regulates actin dynamics and lung cancer invasiveness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kedrin D, van Rheenen J, Hernandez L, Condeelis J, Segall JE. Cell motility and cytoskeletal regulation in invasion and metastasis. J Mammary Gland Biol Neoplasia. 2007;12:143–52.

    PubMed  Google Scholar 

  2. Reig G, Pulgar E, Concha ML. Cell migration: from tissue culture to embryos. Development. 2014;141:1999–2013.

    CAS  PubMed  Google Scholar 

  3. Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol. 2010;188:11–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM. Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol. 2010;26:315–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Svitkina T. The actin cytoskeleton and actin-based motility. Cold Spring Harb Perspect Biol. 2018;10:a018267.

    PubMed  PubMed Central  Google Scholar 

  6. Disanza A, Steffen A, Hertzog M, Frittoli E, Rottner K, Scita G. Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell Mol life Sci. 2005;62:955–70.

    CAS  PubMed  Google Scholar 

  7. Devreotes P, Horwitz AR. Signaling networks that regulate cell migration. Cold Spring Harb Perspect Biol. 2015;7:a005959.

    PubMed  PubMed Central  Google Scholar 

  8. Ridley AJ. Rho GTPase signalling in cell migration. Curr Opin Cell Biol. 2015;36:103–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mendoza MC. Phosphoregulation of the WAVE regulatory complex and signal integration. Semin Cell Dev Biol. 2013;24:272–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Young KG, Copeland JW. Formins in cell signaling. Biochim Biophys Acta. 2010;1803:183–90.

    CAS  PubMed  Google Scholar 

  11. Yin M, Ma W, An L. Cortactin in cancer cell migration and invasion. Oncotarget. 2017;8:88232–43.

    PubMed  PubMed Central  Google Scholar 

  12. Campellone KG, Welch MD. A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. 2010;11:237–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Randall TS, Ehler E. A formin-g role during development and disease. Eur J Cell Biol. 2014;93:205–11.

    CAS  PubMed  Google Scholar 

  14. Kan OM, Takeya R, Abe T, Kitajima N, Nishida M, Tominaga R, et al. Mammalian formin Fhod3 plays an essential role in cardiogenesis by organizing myofibrillogenesis. Biol Open. 2012;1:889–96.

    Google Scholar 

  15. Li D, Hallett MA, Zhu W, Rubart M, Liu Y, Yang Z, et al. Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development. 2011;138:303–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou F, Leder P, Zuniga A, Dettenhofer M. Formin1 disruption confers oligodactylism and alters Bmp signaling. Hum Mol Genet. 2009;18:2472–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeng YF, Xiao YS, Lu MZ, Luo XJ, Hu GZ, Deng KY, et al. Increased expression of formin-like 3 contributes to metastasis and poor prognosis in colorectal carcinoma. Exp Mol Pathol. 2015;98:260–7.

    CAS  PubMed  Google Scholar 

  18. Gardberg M, Heuser VD, Koskivuo I, Koivisto M, Carpen O. FMNL2/FMNL3 formins are linked with oncogenic pathways and predict melanoma outcome. J Pathol Clin Res. 2016;2:41–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu XL, Liang L, Ding YQ. Overexpression of FMNL2 is closely related to metastasis of colorectal cancer. Int J Colorectal Dis. 2008;23:1041–7.

    PubMed  Google Scholar 

  20. Lizarraga F, Poincloux R, Romao M, Montagnac G, Le Dez G, Bonne I, et al. Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells. Cancer Res. 2009;69:2792–800.

    CAS  PubMed  Google Scholar 

  21. Kim D, Jung J, You E, Ko P, Oh S, Rhee S. mDia1 regulates breast cancer invasion by controlling membrane type 1-matrix metalloproteinase localization. Oncotarget. 2016;7:17829–43.

    PubMed  PubMed Central  Google Scholar 

  22. Dong L, Li Z, Xue L, Li G, Zhang C, Cai Z, et al. DIAPH3 promoted the growth, migration and metastasis of hepatocellular carcinoma cells by activating beta-catenin/TCF signaling. Mol Cell Biochem. 2018;438:183–90.

    CAS  PubMed  Google Scholar 

  23. Labbe DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! Prog Mol Biol Transl Sci. 2012;106:253–306.

    CAS  PubMed  Google Scholar 

  24. Bollu LR, Mazumdar A, Savage MI, Brown PH. Molecular pathways: targeting protein tyrosine phosphatases in cancer. Clin Cancer Res. 2017;23:2136–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.

    CAS  PubMed  Google Scholar 

  26. Gao Q, Zhao YJ, Wang XY, Guo WJ, Gao S, Wei L, et al. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. Gastroenterology. 2014;146:1397–407.

    CAS  PubMed  Google Scholar 

  27. Jung Y, Kim P, Keum J, Kim SN, Choi YS, Do IG, et al. Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing. Genes Chromosomes Cancer. 2012;51:590–7.

    CAS  PubMed  Google Scholar 

  28. Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science. 2004;304:1164–6.

    CAS  PubMed  Google Scholar 

  29. Hou SW, Zhi HY, Pohl N, Loesch M, Qi XM, Li RS, et al. PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction. Cancer Res. 2010;70:2901–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li S, Cao J, Zhang W, Zhang F, Ni G, Luo Q, et al. Protein tyrosine phosphatase PTPN3 promotes drug resistance and stem cell-like characteristics in ovarian cancer. Sci Rep. 2016;6:36873.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li MY, Lai PL, Chou YT, Chi AP, Mi YZ, Khoo KH, et al. Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation. Oncogene. 2015;34:3791–803.

    CAS  PubMed  Google Scholar 

  32. Tepass U. FERM proteins in animal morphogenesis. Curr Opin Genet Dev. 2009;19:357–67.

    CAS  PubMed  Google Scholar 

  33. Prokop A, Sanchez-Soriano N, Goncalves-Pimentel C, Molnar I, Kalmar T, Mihaly J. DAAM family members leading a novel path into formin research. Commun Integr Biol. 2011;4:538–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu G, Yan T, Li X, Sun J, Zhang B, Wang H, et al. Daam1 activates RhoA to regulate Wnt5ainduced glioblastoma cell invasion. Oncol Rep. 2018;39:465–72.

    CAS  PubMed  Google Scholar 

  35. Xiong H, Yan T, Zhang W, Shi F, Jiang X, Wang X, et al. miR-613 inhibits cell migration and invasion by downregulating Daam1 in triple-negative breast cancer. Cell Signal. 2018;44:33–42.

    CAS  PubMed  Google Scholar 

  36. Aspenstrom P, Richnau N, Johansson AS. The diaphanous-related formin DAAM1 collaborates with the Rho GTPases RhoA and Cdc42, CIP4 and Src in regulating cell morphogenesis and actin dynamics. Exp Cell Res. 2006;312:2180–94.

    PubMed  Google Scholar 

  37. Flint AJ, Tiganis T, Barford D, Tonks NK. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci USA. 1997;94:1680–5.

    CAS  PubMed  Google Scholar 

  38. Patel A, Sabbineni H, Clarke A, Somanath PR. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci. 2016;157:52–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu J, Meng W, Poy F, Maiti S, Goode BL, Eck MJ. Structure of the FH2 domain of Daam1: implications for formin regulation of actin assembly. J Mol Biol. 2007;369:1258–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamashita M, Higashi T, Suetsugu S, Sato Y, Ikeda T, Shirakawa R, et al. Crystal structure of human DAAM1 formin homology 2 domain. Genes Cells. 2007;12:1255–65.

    CAS  PubMed  Google Scholar 

  41. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    PubMed  Google Scholar 

  42. Martin GS. The hunting of the Src. Nat Rev Mol Cell Biol. 2001;2:467–75.

    CAS  PubMed  Google Scholar 

  43. Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene. 2004;23:7906–9.

    CAS  PubMed  Google Scholar 

  44. Sen B, Johnson FM. Regulation of SRC family kinases in human cancers. J Signal Transduct. 2011;2011:865819.

    PubMed  PubMed Central  Google Scholar 

  45. Zheng Y, Lu Z. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-,and threonine-rich sequence (PEST). Chin J Cancer. 2013;32:75–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang SE, Wu FY, Shin I, Qu S, Arteaga CL. Transforming growth factor {beta} (TGF-{beta})-Smad target gene protein tyrosine phosphatase receptor type kappa is required for TGF-{beta} function. Mol Cell Biol. 2005;25:4703–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. van Vliet C, Bukczynska PE, Puryer MA, Sadek CM, Shields BJ, Tremblay ML, et al. Selective regulation of tumor necrosis factor-induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase. Nat Immunol. 2005;6:253–60.

    PubMed  Google Scholar 

  48. Glondu-Lassis M, Dromard M, Lacroix-Triki M, Nirde P, Puech C, Knani D, et al. PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase. Cancer Res. 2010;70:5116–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin G, Aranda V, Muthuswamy SK, Tonks NK. Identification of PTPN23 as a novel regulator of cell invasion in mammary epithelial cells from a loss-of-function screen of the ‘PTP-ome’Genes Dev. 2011;25:1412–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Reynolds AB, Kanner SB, Bouton AH, Schaller MD, Weed SA, Flynn DC, et al. SRChing for the substrates of Src. Oncogene. 2014;33:4537–47.

    CAS  PubMed  Google Scholar 

  51. Guarino M. Src signaling in cancer invasion. J Cell Physiol. 2010;223:14–26.

    CAS  PubMed  Google Scholar 

  52. Nelson KS, Khan Z, Molnar I, Mihaly J, Kaschube M, Beitel GJ. Drosophila Src regulates anisotropic apical surface growth to control epithelial tube size. Nat Cell Biol. 2012;14:518–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim LC, Song L, Haura EB. Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol. 2009;6:587–95.

    PubMed  Google Scholar 

  54. Bromann PA, Korkaya H, Courtneidge SA. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene. 2004;23:7957–68.

    CAS  PubMed  Google Scholar 

  55. Huveneers S, Danen EH. Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci. 2009;122(Pt 8):1059–69.

    CAS  PubMed  Google Scholar 

  56. Yan T, Zhang A, Shi F, Chang F, Mei J, Liu Y, et al. Integrin alphavbeta3-associated DAAM1 is essential for collagen-induced invadopodia extension and cell haptotaxis in breast cancer cells. J Biol Chem. 2018;293:10172–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shojima K, Sato A, Hanaki H, Tsujimoto I, Nakamura M, Hattori K, et al. Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. Sci Rep. 2015;5:8042.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang X, Zhao X, Yi Z, Ma B, Wang H, Pu Y, et al. WNT5A promotes migration and invasion of human osteosarcoma cells via SRC/ERK/MMP-14 pathway. Cell Biol Int. 2018;42:598–607.

    CAS  PubMed  Google Scholar 

  59. Lu C, Wang X, Zhu H, Feng J, Ni S, Huang J. Over-expression of ROR2 and Wnt5a cooperatively correlates with unfavorable prognosis in patients with non-small cell lung cancer. Oncotarget. 2015;6:24912–21.

    PubMed  PubMed Central  Google Scholar 

  60. Zhu Y, Tian Y, Du J, Hu Z, Yang L, Liu J, et al. Dvl2-dependent activation of Daam1 and RhoA regulates Wnt5a-induced breast cancer cell migration. PloS ONE. 2012;7:e37823.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen DY, Li MY, Wu SY, Lin YL, Tsai SP, Lai PL, et al. The Bro1-domain-containing protein Myopic/HDPTP coordinates with Rab4 to regulate cell adhesion and migration. J Cell Sci. 2012;125(Pt 20):4841–52.

    CAS  PubMed  Google Scholar 

  62. Stehbens SJ, Wittmann T. Analysis of focal adhesion turnover: a quantitative live-cell imaging example. Methods Cell Biol. 2014;123:335–46.

    PubMed  PubMed Central  Google Scholar 

  63. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 2004;6:154–61.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ruey-Hwa Chen, Raymond Habas, Jean-Cheng Kuo, Jai Prakash Singh, and Tzu-Ching Meng for helpful discussion and reagents. We thank Chin-Chun Hung for confocal and cell imaging assistance; Suh-Yuen Liang for the bioinformatic support; Min-Feng Hsu for structural assistance; the National RNAi Core Facility for shRNAs; Academia Sinica Common Mass Spectrometry Facilities for mass spectrometric assistance; IBC Histopathology Core Facility for tissue processing and histology. We are grateful to Cindy Lee for English editing. This work was supported by the Ministry of Science and Technology of Taiwan (NSC102-2311-B-001-027-MY3) and Academia Sinica.

Author information

Authors and Affiliations

Authors

Contributions

G-CC and M-YL conceived the study and designed the experiments. M-YL, C-HW, W-HP, Y-MC, Y-LL and G-DC conducted the experiments. G-DC and H-CW contributed to materials and methods and edited the paper. G-CC and M-YL analyzed the data and wrote the paper.

Corresponding author

Correspondence to Guang-Chao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MY., Peng, WH., Wu, CH. et al. PTPN3 suppresses lung cancer cell invasiveness by counteracting Src-mediated DAAM1 activation and actin polymerization. Oncogene 38, 7002–7016 (2019). https://doi.org/10.1038/s41388-019-0948-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0948-6

This article is cited by

Search

Quick links