Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Akt phosphorylation of mitochondrial Lonp1 protease enables oxidative metabolism and advanced tumor traits

Abstract

Tumor mitochondria have heightened protein folding quality control, but the regulators of this process and how they impact cancer traits are not completely understood. Here we show that the ATP-directed mitochondrial protease, LonP1 is upregulated by stress conditions, including hypoxia, in tumor, but not normal cells. In mitochondria, LonP1 is phosphorylated by Akt on Ser173 and Ser181, enhancing its protease activity. Interference with this pathway induces accumulation of misfolded subunits of electron transport chain complex II and complex V, resulting in impaired oxidative bioenergetics and heightened ROS production. Functionally, this suppresses mitochondrial trafficking to the cortical cytoskeleton, shuts off tumor cell migration and invasion, and inhibits primary and metastatic tumor growth, in vivo. These data identify LonP1 as a key effector of mitochondrial reprogramming in cancer and potential therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. van Oosten-Hawle P, Morimoto RI. Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling. Genes Dev 2014;28:1533–43.

    PubMed  PubMed Central  Google Scholar 

  2. Chevet E, Hetz C, Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov 2015;5:586–97.

    CAS  PubMed  Google Scholar 

  3. Haynes CM, Ron D. The mitochondrial UPR—protecting organelle protein homeostasis. J Cell Sci 2010;123:3849–55.

    CAS  PubMed  Google Scholar 

  4. Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011;475:324–32.

    CAS  PubMed  Google Scholar 

  5. Ciechanover A, Kwon YT. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 2015;47:e147.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 2011;13:184–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hetz C, Chevet E, Oakes SA. Proteostasis control by the unfolded protein response. Nat Cell Biol 2015;17:829–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Potter M, Newport E, Morten KJ. The Warburg effect: 80 years on. Biochem Soc Trans 2016;44:1499–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderson RG, Ghiraldeli LP, Pardee TS. Mitochondria in cancer metabolism, an organelle whose time has come? Biochim Biophys Acta Rev Cancer 2018;1870:96–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell. 2016;166:555–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Altieri DC. Hsp90 regulation of mitochondrial protein folding: from organelle integrity to cellular homeostasis. Cell Mol Life Sci 2013;70:2463–72.

    CAS  PubMed  Google Scholar 

  12. Liu K, Ologbenla A, Houry WA. Dynamics of the ClpP serine protease: a model for self-compartmentalized proteases. Crit Rev Biochem Mol Biol 2014;49:400–12.

    PubMed  Google Scholar 

  13. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science 2008;319:916–9.

    CAS  PubMed  Google Scholar 

  14. Cole A, Wang Z, Coyaud E, Voisin V, Gronda M, Jitkova Y, et al. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2015;27:864–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Seo JH, Rivadeneira DB, Caino MC, Chae YC, Speicher DW, Tang HY, et al. The mitochondrial unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis. PLoS Biol 2016;14:e1002507.

    PubMed  PubMed Central  Google Scholar 

  16. Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007;131:257–70.

    CAS  PubMed  Google Scholar 

  17. Chae YC, Angelin A, Lisanti S, Kossenkov AV, Speicher KD, Wang H, et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun 2013;4:2139.

    PubMed  Google Scholar 

  18. Bota DA, Davies KJ. Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 2016;100:188–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bezawork-Geleta A, Brodie EJ, Dougan DA, Truscott KN. LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci Rep 2015;5:17397.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu B. Mitochondrial Lon protease and cancer. Adv Exp Med Biol 2017;1038:173–82.

    CAS  PubMed  Google Scholar 

  21. Pinti M, Gibellini L, Nasi M, De Biasi S, Bortolotti CA, Iannone A, et al. Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim Biophys Acta 2016;1857:1300–6.

    CAS  PubMed  Google Scholar 

  22. Kao TY, Chiu YC, Fang WC, Cheng CW, Kuo CY, Juan HF, et al. Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex. Cell Death Dis 2015;6:e1642.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pryde KR, Taanman JW, Schapira AH. A LON-ClpP proteolytic axis degrades complex I to extinguish ROS production in depolarized mitochondria. Cell Rep. 2016;17:2522–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Quiros PM, Espanol Y, Acin-Perez R, Rodriguez F, Barcena C, Watanabe K, et al. ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 2014;8:542–56.

    CAS  PubMed  Google Scholar 

  25. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007;129:111–22.

    CAS  PubMed  Google Scholar 

  26. Chae YC, Vaira V, Caino MC, Tang HY, Seo JH, Kossenkov AV, et al. Mitochondrial Akt regulation of hypoxic tumor reprogramming. Cancer Cell 2016;30:257–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibellini L, Losi L, De Biasi S, Nasi M, Lo Tartaro D, Pecorini S, et al. LonP1 differently modulates mitochondrial function and bioenergetics of primary versus metastatic colon cancer cells. Front Oncol 2018;8:254.

    PubMed  PubMed Central  Google Scholar 

  28. Caino MC, Ghosh JC, Chae YC, Vaira V, Rivadeneira DB, Faversani A, et al. PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc Natl Acad Sci Usa 2015;112:8638–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, et al. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci 2006;15:1815–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cha SS, An YJ, Lee CR, Lee HS, Kim YG, Kim SJ, et al. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J. 2010;29:3520–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vieux EF, Wohlever ML, Chen JZ, Sauer RT, Baker TA. Distinct quaternary structures of the AAA+ Lon protease control substrate degradation. Proc Natl Acad Sci USA. 2013;110:E2002–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell 2017;169:381–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Santi SA, Lee H. The Akt isoforms are present at distinct subcellular locations. Am J Physiol Cell Physiol 2010;298:C580–91.

    CAS  PubMed  Google Scholar 

  34. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 2018;15:273–91.

    CAS  PubMed  Google Scholar 

  35. Ghosh JC, Siegelin MD, Vaira V, Faversani A, Tavecchio M, Chae YC, et al. Adaptive mitochondrial reprogramming and resistance to PI3K therapy. J Natl Cancer Inst 2015;107:dju502.

    PubMed  PubMed Central  Google Scholar 

  36. Marchi S, Corricelli M, Branchini A, Vitto VAM, Missiroli S, Morciano G, et al. Akt-mediated phosphorylation of MICU1 regulates mitochondrial Ca(2+) levels and tumor growth. EMBO J. 2018;38:e99435.

    PubMed  PubMed Central  Google Scholar 

  37. Sanchez-Alvarez M, Del Pozo MA, Bakal C. AKT-mTOR signaling modulates the dynamics of IRE1 RNAse activity by regulating ER-mitochondria contacts. Sci Rep 2017;7:16497.

    PubMed  PubMed Central  Google Scholar 

  38. Wallace DC. Mitochondria and cancer. Nat Rev Cancer 2012;12:685–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pinti M, Gibellini L, Liu Y, Xu S, Lu B, Cossarizza A. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci 2015;72:4807–24.

    CAS  PubMed  Google Scholar 

  40. Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 2014;14:709–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013;12:931–47.

    CAS  PubMed  Google Scholar 

  42. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015;527:186–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Senft D, Ronai ZA. Regulators of mitochondrial dynamics in cancer. Curr Opin Cell Biol 2016;39:43–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Desai SP, Bhatia SN, Toner M, Irimia D. Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J. 2013;104:2077–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Caino MC, Seo JH, Aguinaldo A, Wait E, Bryant KG, Kossenkov AV, et al. A neuronal network of mitochondrial dynamics regulates metastasis. Nat Commun 2016;7:13730.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2013;32:4814–24.

    CAS  PubMed  Google Scholar 

  47. Granot Z, Kobiler O, Melamed-Book N, Eimerl S, Bahat A, Lu B, et al. Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors. Mol Endocrinol 2007;21:2164–77.

    CAS  PubMed  Google Scholar 

  48. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008;26:1367–72.

    CAS  PubMed  Google Scholar 

  49. Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 2016;44:D1251–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank James Hayden and Frederick Keeney for assistance with time-lapse videomicroscopy and Sandra Harper for performing the HPLC gel filtration experiments. This work was supported by the National Institutes of Health (NIH) grants P01 CA140043 (DCA and DWS), R35 CA220446 (D.C.A.) R50 CA221838 (H-YT), and R50 CA211199 (AVK). and Support for Core Facilities utilized in this study was provided by Cancer Center Support Grant (CCSG) CA010815 to The Wistar Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario C. Altieri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, J.C., Seo, J.H., Agarwal, E. et al. Akt phosphorylation of mitochondrial Lonp1 protease enables oxidative metabolism and advanced tumor traits. Oncogene 38, 6926–6939 (2019). https://doi.org/10.1038/s41388-019-0939-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0939-7

This article is cited by

Search

Quick links