Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anti-apoptotic effect by the suppression of IRF1 as a downstream of Wnt/β-catenin signaling in colorectal cancer cells

Abstract

Impaired Wnt signaling pathway plays a crucial role in the development of colorectal cancer through activation of the β-catenin/TCF7L2 complex. Although genes upregulated by Wnt/β-catenin signaling have been intensively studied, the roles of downregulated genes are poorly understood. Previously, we reported that interferon-induced proteins with tetratricopeptide repeats 2 (IFIT2) was downregulated by the Wnt/β-catenin signaling, and that the suppressed expression of IFIT2 conferred antiapoptotic property to colorectal cancer (CRC) cells. However, the mechanisms underlying how Wnt/β-catenin signaling regulates IFIT2 remain to be elucidated. In this study, we have uncovered that the expression of IFIT2 is induced by IRF1, which is negatively regulated by the Wnt/β-catenin signaling. In addition, we found that downregulation of IRF1 is mediated by its degradation through the ubiquitination-proteasome pathway, and that decreased activity of a deubiquitinase complex containing USP1 and UAF1 is involved in the degradation of IRF1 by Wnt/β-catenin signaling. These data should provide better understanding of the Wnt signaling pathway and human carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

  2. Giles RH, Van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003;1653:1–24.

    Article  CAS  Google Scholar 

  3. Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene. 2006;25:3787–800.

    Article  CAS  Google Scholar 

  4. Zurawel RH, Chiappa SA, Allen C, Raffel C. Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res. 1998;58:896–9.

    CAS  PubMed  Google Scholar 

  5. Palacios J, Gamallo C. Mutations in the beta-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res. 1998;58:1344–7.

    CAS  PubMed  Google Scholar 

  6. Salahshor S, Woodgett JR. The links between axin and carcinogenesis. J Clin Pathol. 2005;58:225–36.

    Article  CAS  Google Scholar 

  7. Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000;24:245–50.

    Article  CAS  Google Scholar 

  8. Lien W-H, Fuchs E. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes Dev. 2014;28:1517–32.

    Article  CAS  Google Scholar 

  9. Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR, et al. Myc deletion rescues Apc deficiency in the small intestine. Nature. 2007;446:676–9.

    Article  CAS  Google Scholar 

  10. McCormick F, Tetsu O. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–6.

    Article  Google Scholar 

  11. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    Article  CAS  Google Scholar 

  12. Ohsugi T, Yamaguchi K, Zhu C, Ikenoue T, Furukawa Y. Decreased expression of interferon-induced protein 2 (IFIT2) by Wnt/β-catenin signaling confers anti-apoptotic properties to colorectal cancer cells. Oncotarget. 2017;8:100176–86.

    Article  Google Scholar 

  13. Yanai H, Negishi H, Taniguchi T. The IRF family of transcription factors: inception, impact and implications in oncogenesis. Oncoimmunology 2012;1:1376–86.

    Article  Google Scholar 

  14. Darnell JE, Kerr LM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–21.

    Article  CAS  Google Scholar 

  15. Kröger A, Dallügge A, Kirchhoff S, Hauser H. IRF-1 reverts the transformed phenotype of oncogenically transformed cells in vitro and in vivo. Oncogene. 2003;22:1045–56.

    Article  Google Scholar 

  16. Kano A, Haruyama T, Akaike T, Watanabe Y. IRF-1 is an essential mediator in IFN-gamma-induced cell cycle arrest and apoptosis of primary cultured hepatocytes. Biochem Biophys Res Commun. 1999;257:672–7.

    Article  CAS  Google Scholar 

  17. Schwartz JL, Shajahan AN, Clarke R. The role of interferon regulatory factor-1 (IRF1) in overcoming antiestrogen resistance in the treatment of breast cancer. Int J Breast Cancer. 2011;2011:912102.

    Article  CAS  Google Scholar 

  18. Kim E-J, Lee J-M, Namkoong S-E, Um S-J, Park J-S. Interferon regulatory factor-1 mediates interferon-?-induced apoptosis in ovarian carcinoma cells. J Cell Biochem. 2002;85:369–80.

    Article  CAS  Google Scholar 

  19. Tomita Y, Bilim V, Hara N, Kasahara T, Takahashi K. Role of IRF-1 and caspase-7 in IFN-? enhancement of Fas-mediated apoptosis in ACHN renal cell carcinoma cells. Int J Cancer. 2003;104:400–8.

    Article  CAS  Google Scholar 

  20. Kim PKM, Armstrong M, Liu Y, Yan P, Bucher B, Zuckerbraun BS, et al. IRF-1 expression induces apoptosis and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo. Oncogene. 2004;23:1125–35.

    Article  CAS  Google Scholar 

  21. Lebwohl D, Canetta R. Clinical oncology update clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur J Cancer. 1998;1522–34.

    Article  CAS  Google Scholar 

  22. Ruiz-Ruiz C, Ruiz de Almodóvar C, Rodríguez A, Ortiz-Ferrón G, Redondo JM, López-Rivas A. The up-regulation of human caspase-8 by interferon-gamma in breast tumor cells requires the induction and action of the transcription factor interferon regulatory factor-1. The Journal of biological chemistry. Am Soc Biochem Mol Biol. 2004;279:19712–20.

    CAS  Google Scholar 

  23. Clarke N, Jimenez-Lara AM, Voltz E, Gronemeyer H. Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. EMBO J. 2004;23:3051–60.

    Article  CAS  Google Scholar 

  24. Matsuyama T, Kimura T, Kitagawa M, Pfeffer K, Kawakami T, Watanabe N. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell. 1993;75:83–97.

    Article  CAS  Google Scholar 

  25. Penninger JM, Sirard C, Mittrücker HW, Chidgey A, Kozieradzki I, Nghiem M. The Interferon regulatory transcription factor IRF-1 controls positive and negative selection of CD8+ thymocytes. Immunity. 1997;7:243–54.

    Article  CAS  Google Scholar 

  26. Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature. 2009;458:438–44.

    Article  CAS  Google Scholar 

  27. Narayan V, Pion E, Landré V, Müller P, Ball KL. Docking-dependent ubiquitination of the interferon regulatory factor-1 tumor suppressor protein by the ubiquitin ligase CHIP. J Biol Chem. 2011;286:607–19.

    Article  CAS  Google Scholar 

  28. Landré V, Pion E, Narayan V, Xirodimas DP, Ball KL. DNA-binding regulates site-specific ubiquitination of IRF-1. Biochem J. 2013;449:707–17.

    Article  Google Scholar 

  29. Ritorto MS, Ewan R, Perez-Oliva AB, Knebel A, Buhrlage SJ, Wightman M, et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat Commun. 2014;5:4763.

    Article  CAS  Google Scholar 

  30. Ritorto MS, Ewan R, Perez-Oliva AB, Knebel A, Buhrlage SJ, Wightman M, et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat Commun. 2014;5:4763.

    Article  CAS  Google Scholar 

  31. Zeng G, Apte U, Cieply B, Singh S, Monga SPS. siRNA-mediated beta-catenin knockdown in human hepatoma cells results in decreased growth and survival. Neoplasia. 2007;9:951–9.

    Article  CAS  Google Scholar 

  32. Benech P, Vigneron M, Peretz D, Revel M, Chebath J. Interferon-responsive regulatory elements in the promoter of the human 2′,5′-Oligo(A) synthetase gene. Mol Cell Biol. 1987;7:4498–504.

    Article  CAS  Google Scholar 

  33. Nozawa H, Oda E, Nakao K, Ishihara M, Ueda S, Yokochi T, et al. Loss of transcription factor IRF-1 affects tumor susceptibility in mice carrying the Ha-ras transgene or nullizygosity for p53. Genes Dev. 1999;13:1240–5.

    Article  CAS  Google Scholar 

  34. Pamment J, Ramsay E, Kelleher M, Dornan D, Ball KL. Regulation of the IRF-1 tumour modifier during the response to genotoxic stress involves an ATM-dependent signalling pathway. Oncogene. 2002;21:7776–85.

    Article  CAS  Google Scholar 

  35. Tan RS, Taniguchi T, Harada H. Identification of the lysyl oxidase gene as target of the antioncogenic transcription factor, IRF-1, and its possible role in tumor suppression. Cancer Res. 1996;56:2417–21.

    CAS  PubMed  Google Scholar 

  36. Tamura T, Ishihara M, Lamphier MS, Tanaka N, Oishi I, Aizawa S, et al. An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes. Nature. 1995;376:596–9.

    Article  CAS  Google Scholar 

  37. Sanceâ AuJ, Hiscott J, Delattre O, Wietzerbin J. IFN-b induces serine phosphorylation of Stat-1 in Ewing’s sarcoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7. Oncogene. 2000;19:3372–83.

    Article  Google Scholar 

  38. Ruiz-Ruiz C, Ruiz De Almodó Var C, Rodríguezʈ A, Ortiz-Ferró G, Redondoʈ JM, Ló Pez-Rivas A. The up-regulation of human caspase-8 by interferon-γ in breast tumor cells requires the induction and action of the transcription factor interferon regulatory factor-1. J Biol Chem. 2004;279:19712–20.

    Article  CAS  Google Scholar 

  39. Gao J, Senthil M, Ren B, Yan J, Xing Q, Yu J, et al. IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells. Cell Death Differ. 2010;17:699–709.

    Article  CAS  Google Scholar 

  40. Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP, Xie D. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res. 2001;61:8917–23.

    CAS  PubMed  Google Scholar 

  41. Lowney JK, Boucher LD, Swanson PE, Doherty GM. Interferon regulatory factor-1 and -2 expression in human melanoma specimens. Ann Surg Oncol. 1999;6:604–8.

    Article  CAS  Google Scholar 

  42. Moriyama Y, Nishiguchi S, Tamori A, Koh N, Yano Y, Kubo S, et al. Tumor-suppressor effect of interferon regulatory factor-1 in human hepatocellular carcinoma. Clin Cancer Res. 2001;7:1293–8.

    CAS  PubMed  Google Scholar 

  43. Connett JM, Badri L, Giordano TJ, Connett WC, Doherty GM. Interferon regulatory factor 1 (IRF-1) and IRF-2 expression in breast cancer tissue microarrays. J Interferon Cytokine Res. 2005;25:587–94.

    Article  CAS  Google Scholar 

  44. Giatromanolaki A, Koukourakis MI, Ritis K, Mimidis K, Sivridis E. Interferon regulatory factor-1 (IRF-1) suppression and derepression during endometrial tumorigenesis and cancer progression. Cytokine 2004;26:164–8.

    Article  CAS  Google Scholar 

  45. Wang Y, Liu D-P, Chen P-P, Koeffler HP, Tong X-J, Xie D. Involvement of IFN regulatory factor (IRF)-1 and IRF-2 in the formation and progression of human esophageal cancers. Cancer Res. 2007;67:2535–43.

    Article  CAS  Google Scholar 

  46. Sakai T, Mashima H, Yamada Y, Goto T, Sato W, Dohmen T, et al. The roles of interferon regulatory factors 1 and 2 in the progression of human pancreatic cancer. Pancreas 2014;43:909–16.

    Article  CAS  Google Scholar 

  47. Nozawa H, Oda E, Ueda S, Tamura G, Maesawa C, Muto T, et al. Functionally inactivating point mutation in the tumor-suppressorIRF-1 gene identified in human gastric cancer. Int J Cancer 1998;77:522–7.

    Article  CAS  Google Scholar 

  48. Tamura G, Ogasawara S, Nishizuka S, Sakata K, Maesawa C, Suzuki Y, et al. Two distinct regions of deletion on the long arm of chromosome 5 in differentiated adenocarcinomas of the stomach. Cancer Res. 1996;56:612–5.

    CAS  PubMed  Google Scholar 

  49. Tada S, Saito H, Tsunematsu S, Ebinuma H, Wakabayashi K, Masuda T, et al. Interferon regulatory factor-1 gene abnormality and loss of growth inhibitory effect of interferon-alpha in human hepatoma cell lines. Int J Oncol. 1998;13:1207–16.

    CAS  PubMed  Google Scholar 

  50. Harada H, Kondo T, Ogawa S, Tamura T, Kitagawa M, Tanaka N, et al. Accelerated exon skipping of IRF-1 mRNA in human myelodysplasia/leukemia; a possible mechanism of tumor suppressor inactivation. Oncogene 1994;9:3313–20.

    CAS  PubMed  Google Scholar 

  51. Harada H, Kitagawa M, Tanaka N, Yamamoto H, Harada K, Ishihara M, et al. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science. 1993;259:971–4.

    Article  CAS  Google Scholar 

  52. Tanaka N, Ishihara M, Taniguchi T. Suppression of c-myc or fosB-induced cell transformation by the transcription factor IRF-1. Cancer Lett. 1994;83:191–6.

    Article  CAS  Google Scholar 

  53. Mannick EE, Cote RL, Schurr JR, Krowicka HS, Sloop GD, Zapata-Velandia A, et al. Altered phenotype of dextran sulfate sodium colitis in interferon regulatory factor-1 knock-out mice. J Gastroenterol Hepatol. 2005;20:371–80.

    Article  CAS  Google Scholar 

  54. Yuan L, Zhou C, Lu Y, Hong M, Zhang Z, Zhang Z, et al. IFN-γ-mediated IRF1/miR-29b feedback loop suppresses colorectal cancer cell growth and metastasis by repressing IGF1. Cancer Lett. 2015;359:136–47.

    Article  CAS  Google Scholar 

  55. Murtas D, Maric D, De Giorgi V, Reinboth J, Worschech A, Fetsch P, et al. IRF-1 responsiveness to IFN-γ predicts different cancer immune phenotypes. Br J Cancer. 2013;109:76–82.

    Article  CAS  Google Scholar 

  56. Moretti J, Chastagner P, Liang C-C, Cohn MA, Israël A, Brou C. The ubiquitin-specific protease 12 (USP12) is a negative regulator of notch signaling acting on notch receptor trafficking toward degradation. J Biol Chem. 2012;287:29429–41.

    Article  CAS  Google Scholar 

  57. Cohn MA, Kowal P, Yang K, Haas W, Huang TT, Gygi SP, et al. A UAF1-containing multisubunit protein complex regulates the fanconi anemia pathway. Mol Cell. 2007;28:786–97.

    Article  CAS  Google Scholar 

  58. Cohn MA, Kee Y, Haas W, Gygi SP, D’Andrea AD. UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J Biol Chem. 2009;284:5343–51.

    Article  CAS  Google Scholar 

  59. Yin J, Schoeffler AJ, Wickliffe K, Newton K, Starovasnik MA, Dueber EC, et al. Structural insights into WD-repeat 48 activation of ubiquitin-specific protease 46. Structure. 2015;23:2043–54.

    Article  CAS  Google Scholar 

  60. Huang TT, Nijman SMB, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol. 2006;8:339–47.

    CAS  PubMed  Google Scholar 

  61. Van Twest S, Murphy VJ, Hodson C, Tan W, Swuec P, O’Rourke JJ, et al. Mechanism of ubiquitination and deubiquitination in the fanconi anemia pathway. Mol Cell. 2017;65:247–59.

    Article  Google Scholar 

  62. Murai J, Yang K, Dejsuphong D, Hirota K, Takeda S, D’Andrea AD. The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol Cell Biol. 2011;31:2462–9.

    Article  CAS  Google Scholar 

  63. Liang F, Longerich S, Miller AS, Tang C, Buzovetsky O, Xiong Y, et al. Promotion of RAD51-mediated homologous DNA pairing by the RAD51AP1-UAF1 complex. Cell Rep. 2016;15:2118–26.

    Article  CAS  Google Scholar 

  64. Li X, Stevens PD, Yang H, Gulhati P, Wang W, Evers BM, et al. The deubiquitination enzyme USP46 functions as a tumor suppressor by controlling PHLPP-dependent attenuation of Akt signaling in colon cancer. Oncogene. 2013;32:471–8.

    Article  CAS  Google Scholar 

  65. Chen J, Dexheimer TS, Ai Y, Liang Q, Villamil MA, Inglese J, et al. Selective and cell-active inhibitors of the USP1/ UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem Biol. 2011;18:1390–400.

    Article  CAS  Google Scholar 

  66. Kim JH, Park SY, Jun Y, Kim JY, Nam JS. Roles of Wnt target genes in the journey of cancer stem cells. Int J Mol Sci. 2017;18:1604.

    Article  Google Scholar 

  67. Oestergaard VH, Langevin F, Kuiken HJ, Pace P, Niedzwiedz W, Simpson LJ, et al. Deubiquitination of FANCD2 Is required for DNA crosslink repair. Mol Cell. 2007;28:798–809.

    Article  CAS  Google Scholar 

  68. Lee K-Y, Yang K, Cohn MA, Sikdar N, D’Andrea AD, Myung K. Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through Its interactions with PCNA and USP1. J Biol Chem. 2010;285:10362–9.

    Article  CAS  Google Scholar 

  69. Mistry H, Hsieh G, Buhrlage SJ, Huang M, Park E, Cuny GD, et al. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther. 2013;12:2651–62.

    Article  CAS  Google Scholar 

  70. Brief Definitive Report. J Exp Med. 2017;214: 3553–63.

  71. Pettersson S, Kelleher M, Pion E, Wallace M, Ball KL. Role of Mdm2 acid domain interactions in recognition and ubiquitination of the transcription factor IRF-2. Biochem J. 2009;418:575–85.

    Article  CAS  Google Scholar 

  72. Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, Murga M, et al. USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol. 2016;23:270–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Seira Hatakeyama, Rika Koubo, Tomoko Isobe and Yumiko Ishii (The University of Tokyo) for their technical assistance.

Funding

This work was supported in part by JSPS KAKENHI Grant numbers JP17H03575 (Y.F.) and the Sasakawa Scientific Research Grant (Grant numbers 29-435, T.O.) from the Japan Science Society.

Author information

Authors and Affiliations

Authors

Contributions

TO and KY performed experiments. TO, CZ, KT, KY, TI, and YF provided interpretation of the data. MS, GT, and HY collected and analyzed clinical samples. TO wrote the draft of the manuscript, and KY and YF revised the manuscript. All authors have approved this manuscript.

Corresponding author

Correspondence to Yoichi Furukawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohsugi, T., Yamaguchi, K., Zhu, C. et al. Anti-apoptotic effect by the suppression of IRF1 as a downstream of Wnt/β-catenin signaling in colorectal cancer cells. Oncogene 38, 6051–6064 (2019). https://doi.org/10.1038/s41388-019-0856-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0856-9

This article is cited by

Search

Quick links