Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CAPS1 promotes colorectal cancer metastasis via Snail mediated epithelial mesenchymal transformation

Abstract

Colorectal cancer (CRC) is a common gastrointestinal cancer with high mortality rate mostly due to metastasis. Ca2+-dependent activator protein for secretion 1 (CAPS1) was originally identified as a soluble factor that reconstitutes Ca2+-dependent secretion. In this study, we discovered a novel role of CAPS1 in CRC metastasis. CAPS1 is frequently up-regulated in CRC tissues. Increased CAPS1 expression is associated with frequent metastasis and poor prognosis of CRC patients. Overexpression of CAPS1 promotes CRC cell migration and invasion in vitro, as well as liver metastasis in vivo, without affecting cell proliferation. CAPS1 induces epithelial–mesenchymal transition (EMT), including decreased E-cadherin and ZO-1, epithelial marker expression, and increased N-cadherin and Snail, mesenchymal marker expression. Snail knockdown reversed CAPS1-induced EMT, cell migration and invasion. This result indicates that Snail is required for CAPS1-mediated EMT process and metastasis in CRC. Furthermore, CAPS1 can bind with Septin2 and p85 (subunit of PI3K). LY294002 and wortmanin, PI3K/Akt inhibitors, can abolish CAPS1-induced increase of Akt/GSK3β activity, as well as increase of Snail protein level. Taken together, CAPS1 promotes colorectal cancer metastasis through PI3K/Akt/GSK3β/Snail signal pathway-mediated EMT process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  Google Scholar 

  2. Mundade R, Imperiale TF, Prabhu L, Loehrer PJ, Lu T. Genetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience. 2014;1:400–6.

    Article  Google Scholar 

  3. Hawk ET, Levin B. Colorectal cancer prevention. J Clin Oncol. 2005;23:378–91.

    Article  Google Scholar 

  4. Cao H, Xu E, Liu H, Wan L, Lai M. Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol Res Pract. 2015;211:557–69.

    Article  CAS  Google Scholar 

  5. Vu T, Datta PK. Regulation of EMT in colorectal cancer: a culprit in metastasis. Cancers (Basel). 2017;9:pii: E171

    Article  Google Scholar 

  6. Wang J, Zhu X, Hu J, He G, Li X, Wu P, et al. The positive feedback between Snail and DAB2IP regulates EMT, invasion and metastasis in colorectal cancer. Oncotarget. 2015;6:27427–39.

    PubMed  PubMed Central  Google Scholar 

  7. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6:931–40.

    Article  CAS  Google Scholar 

  8. Lu LL, Chen XH, Zhang G, Liu ZC, Wu N, Wang H, et al. CCL21 facilitates chemoresistance and cancer stem cell-like properties of colorectal cancer cells through AKT/GSK-3beta/Snail signals. Oxid Med Cell Longev. 2016;2016:5874127.

    Article  Google Scholar 

  9. Mali AV, Joshi AA, Hegde MV, Kadam SS. Enterolactone modulates the ERK/NF-kappaB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-beta-induced epithelial-mesenchymal transition. Cancer Biol Med. 2018;15:137–56.

    Article  Google Scholar 

  10. Luo W, Liu X, Lu JJ, Wang Y, Chen X. Toosendanin, a natural product, inhibited TGF-beta1-induced epithelial-mesenchymal transition through ERK/Snail pathway. Phytother Res. 2018;32:2009–20.

    Article  CAS  Google Scholar 

  11. Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124:1853–67.

    Article  CAS  Google Scholar 

  12. Tang BL. A unique SNARE machinery for exocytosis of cytotoxic granules and platelets granules. Mol Membr Biol. 2015;32:120–6.

    Article  CAS  Google Scholar 

  13. Tanaka T, Goto K, Iino M. Diverse functions and signal transduction of the exocyst complex in tumor cells. J Cell Physiol. 2017;232:939–57.

    Article  CAS  Google Scholar 

  14. Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol. 2014;76:301–31.

    Article  CAS  Google Scholar 

  15. Chen L, Guo P, He Y, Chen Z, Chen L, Luo Y, et al. HCC-derived exosomes elicit HCC progression and recurrence by epithelial-mesenchymal transition through MAPK/ERK signalling pathway. Cell Death Dis. 2018;9:513.

    Article  Google Scholar 

  16. Mathias RA, Wang B, Ji H, Kapp EA, Moritz RL, Zhu HJ, et al. Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition. J Proteome Res. 2009;8:2827–37.

    Article  CAS  Google Scholar 

  17. Walent JH, Porter BW, Martin TF. A novel 145 kd brain cytosolic protein reconstitutes Ca(2+)-regulated secretion in permeable neuroendocrine cells. Cell. 1992;70:765–75.

    Article  CAS  Google Scholar 

  18. Rettig J, Neher E. Emerging roles of presynaptic proteins in Ca++-triggered exocytosis. Science. 2002;298:781–5.

    Article  CAS  Google Scholar 

  19. Hay JC, Martin TF. Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J Cell Biol. 1992;119:139–51.

    Article  CAS  Google Scholar 

  20. Ann K, Kowalchyk JA, Loyet KM, Martin TF. Novel Ca2+-binding protein (CAPS) related to UNC-31 required for Ca2+-activated exocytosis. J Biol Chem. 1997;272:19637–40.

    Article  CAS  Google Scholar 

  21. Koch H, Hofmann K, Brose N. Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochem J. 2000;349:247–53.

    Article  CAS  Google Scholar 

  22. James DJ, Kowalchyk J, Daily N, Petrie M, Martin TF. CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions. Proc Natl Acad Sci USA. 2009;106:17308–13.

    Article  CAS  Google Scholar 

  23. Sadakata T, Washida M, Morita N, Furuichi T. Tissue distribution of Ca2+-dependent activator protein for secretion family members CAPS1 and CAPS2 in mice. J Histochem Cytochem. 2007;55:301–11.

    Article  CAS  Google Scholar 

  24. Hosono M, Shinoda Y, Hirano T, Ishizaki Y, Furuichi T, Sadakata T. Interaction of Ca(2+)-dependent activator protein for secretion 1 (CAPS1) with septin family proteins in mouse brain. Neurosci Lett. 2016;617:232–5.

    Article  CAS  Google Scholar 

  25. Garcia Z, Silio V, Marques M, Cortes I, Kumar A, Hernandez C, et al. A PI3K activity-independent function of p85 regulatory subunit in control of mammalian cytokinesis. EMBO J. 2006;25:4740–51.

    Article  CAS  Google Scholar 

  26. Chen T, Li J, Xu M, Zhao Q, Hou Y, Yao L, et al. PKCepsilon phosphorylates MIIP and promotes colorectal cancer metastasis through inhibition of RelA deacetylation. Nat Commun. 2017;8:939.

    Article  Google Scholar 

  27. Im HJ, Kim HG, Lee JS, Kim HS, Cho JH, Jo IJ, et al. A preclinical model of chronic alcohol consumption reveals increased metastatic seeding of colon cancer cells in the liver. Cancer Res. 2016;76:1698–704.

    Article  CAS  Google Scholar 

  28. VanSaun MN, Lee IK, Washington MK, Matrisian L, Gorden DL. High fat diet induced hepatic steatosis establishes a permissive microenvironment for colorectal metastases and promotes primary dysplasia in a murine model. Am J Pathol. 2009;175:355–64.

    Article  Google Scholar 

  29. Zhang Y, Davis C, Shah S, Hughes D, Ryan JC, Altomare D, et al. IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Mol Carcinog. 2017;56:272–87.

    Article  CAS  Google Scholar 

  30. Miller S, Rogers HA, Lyon P, Rand V, Adamowicz-Brice M, Clifford SC, et al. Genome-wide molecular characterization of central nervous system primitive neuroectodermal tumor and pineoblastoma. Neuro Oncol. 2011;13:866–79.

    Article  CAS  Google Scholar 

  31. Liu T, Xue R, Huang X, Zhang D, Dong L, Wu H, et al. Proteomic profiling of hepatitis B virus-related hepatocellular carcinoma with magnetic bead-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Acta Biochim Biophys Sin (Shanghai). 2011;43:542–50.

    Article  CAS  Google Scholar 

  32. Xue R, Tang W, Dong P, Weng S, Ma L, Chen S. et al. CAPS1 negatively regulates hepatocellular carcinoma development through alteration of exocytosis-associated tumor microenvironment. Int J Mol Sci. 2016;17:pii: E1626

    Article  Google Scholar 

  33. Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66:107–19.

    Article  CAS  Google Scholar 

  34. Chen XF, Zhang HJ, Wang HB, Zhu J, Zhou WY, Zhang H, et al. Transforming growth factor-beta1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways. Mol Biol Rep. 2012;39:3549–56.

    Article  CAS  Google Scholar 

  35. Nagano K, Takeuchi H, Gao J, Mori Y, Otani T, Wang D, et al. Tomosyn is a novel Akt substrate mediating insulin-dependent GLUT4 exocytosis. Int J Biochem Cell Biol. 2015;62:62–71.

    Article  CAS  Google Scholar 

  36. Pemberton JG, Orr ME, Stafford JL, Chang JP. PI3K signalling in GnRH actions on dispersed goldfish pituitary cells: relationship with PKC-mediated LH and GH release and regulation of long-term effects on secretion and total cellular hormone availability. Gen Comp Endocrinol. 2014;205:268–78.

    Article  CAS  Google Scholar 

  37. Leipe DD, Wolf YI, Koonin EV, Aravind L. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol. 2002;317:41–72.

    Article  CAS  Google Scholar 

  38. Huang YW, Surka MC, Reynaud D, Pace-Asciak C, Trimble WS. GTP binding and hydrolysis kinetics of human septin 2. FEBS J. 2006;273:3248–60.

    Article  CAS  Google Scholar 

  39. Abbey M, Hakim C, Anand R, Lafera J, Schambach A, Kispert A, et al. GTPase domain driven dimerization of SEPT7 is dispensable for the critical role of septins in fibroblast cytokinesis. Sci Rep. 2016;6:20007.

    Article  CAS  Google Scholar 

  40. Angelis D, Spiliotis ET. Septin mutations in human cancers. Front Cell Dev Biol. 2016;4:122.

    Article  Google Scholar 

  41. Xu D, Liu A, Wang X, Chen Y, Shen Y, Tan Z, et al. Repression of Septin9 and Septin2 suppresses tumor growth of human glioblastoma cells. Cell Death Dis. 2018;9:514.

    Article  Google Scholar 

  42. Cao LQ, Shao ZL, Liang HH, Zhang DW, Yang XW, Jiang XF, et al. Activation of peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits hepatoma cell growth via downregulation of SEPT2 expression. Cancer Lett. 2015;359:127–35.

    Article  CAS  Google Scholar 

  43. Huang X, Xiang L, Li Y, Zhao Y, Zhu H, Xiao Y, et al. Snail/FOXK1/Cyr61 signaling axis regulates the epithelial-mesenchymal transition and metastasis in colorectal cancer. Cell Physiol Biochem. 2018;47:590–603.

    Article  CAS  Google Scholar 

  44. Wang Y, Wu Z, Hu L. The regulatory effects of metformin on the [SNAIL/miR-34]:[ZEB/miR-200] system in the epithelial-mesenchymal transition(EMT) for colorectal cancer(CRC). Eur J Pharmacol. 2018;834:45–53.

    Article  CAS  Google Scholar 

  45. Hahn S, Jackstadt R, Siemens H, Hunten S, Hermeking H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J. 2013;32:3079–95.

    Article  CAS  Google Scholar 

  46. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.

    Article  CAS  Google Scholar 

  47. Sanchez-Tillo E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci. 2012;69:3429–56.

    Article  CAS  Google Scholar 

  48. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998;392:190–3.

    Article  CAS  Google Scholar 

  49. Shiozaki H, Oka H, Inoue M, Tamura S, Monden M. E-cadherin mediated adhesion system in cancer cells. Cancer. 1996;77:1605–13.

    Article  CAS  Google Scholar 

  50. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  Google Scholar 

  51. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–89.

    Article  CAS  Google Scholar 

  52. Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 2008;283:33437–46.

    Article  CAS  Google Scholar 

  53. Smit MA, Geiger TR, Song JY, Gitelman I, Peeper DS. A Twist-Snail axis critical for TrkB-induced epithelial-mesenchymal transition-like transformation, anoikis resistance, and metastasis. Mol Cell Biol. 2009;29:3722–37.

    Article  CAS  Google Scholar 

  54. Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, et al. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem. 2002;277:39209–16.

    Article  CAS  Google Scholar 

  55. Price TJ, Peeters M, Kim TW, Li J, Cascinu S, Ruff P, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 2014;15:569–79.

    Article  CAS  Google Scholar 

  56. Agarwal E, Chaudhuri A, Leiphrakpam PD, Haferbier KL, Brattain MG, Chowdhury S. Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal cancer. BMC Cancer. 2014;14:145.

    Article  Google Scholar 

  57. Do K, Speranza G, Bishop R, Khin S, Rubinstein L, Kinders RJ, et al. Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest New Drugs. 2015;33:720–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hai-Ying Zeng from the Department of Pathology, Zhongshan Hospital of Fudan University, for technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (81672334, 81772615, 81572686, 81772968, 81573423, 81770137, 81672720) and Shanghai Science and Technology Commission (15410710100, 16ZR1406100).

Author contributions

SC, LD, XS, and GZ designed and conceived this project. GZ and SC developed methodology. GZ, YX, SW, and YC performed experiments and generated data. YX, SC, and SZ analyzed and interpreted data. YX, SC, and GZ wrote the manuscript. All authors contributed to and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-Zhong Shen, Ling Dong or She Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, GX., Xu, YY., Weng, SQ. et al. CAPS1 promotes colorectal cancer metastasis via Snail mediated epithelial mesenchymal transformation. Oncogene 38, 4574–4589 (2019). https://doi.org/10.1038/s41388-019-0740-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0740-7

This article is cited by

Search

Quick links