Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Cnnm4 deficiency suppresses Ca2+ signaling and promotes cell proliferation in the colon epithelia

Abstract

CNNM4 is a Mg2+ transporter highly expressed in the colon epithelia. Its importance in regulating intracellular Mg2+ levels and cancer development has been documented, but how CNNM4 function affects the dynamic homeostasis of the epithelial tissue remains unclear. Here, we show that Cnnm4 deficiency promotes cell proliferation and partly suppresses cell differentiation in the colon epithelia, making them vulnerable to cancer development. Such phenotypic characteristics are highly similar to those of mice lacking Trpv1, which encodes the cation channel involved in capsaicin-stimulated Ca2+ influx. Indeed, Ca2+-imaging analyses using the organoid culture reveal that Ca2+ influx stimulated by capsaicin is greatly impaired by Cnnm4 deficiency. Moreover, EGF receptor signaling is constitutively activated in the colon epithelia of Cnnm4-deficient mice, as is the case with Trpv1-deficient mice. The administration of gefitinib, a clinically available inhibitor of EGF receptor, cancels the augmented proliferation of cells observed in Cnnm4-deficient mice. Collectively, these results establish the functional interplay between Mg2+ and Ca2+ in the colon epithelia, which is crucial for maintaining the dynamic homeostasis of the epithelial tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Romani AM. Cellular magnesium homeostasis. Arch Biochem Biophys. 2011;512:1–23.

    Article  CAS  Google Scholar 

  2. Günther T. Concentration, compartmentation and metabolic function of intracellular free Mg2+. Magnes Res. 2006;19:225–36.

    PubMed  Google Scholar 

  3. Yamazaki D, Funato Y, Miura J, Sato S, Toyosawa S, Furutani K, et al. Basolateral Mg2+ extrusion via CNNM4 mediates transcellular Mg2+ transport across epithelia: a mouse model. PLoS Genet. 2013;9:e1003983.

    Article  Google Scholar 

  4. Hirata Y, Funato Y, Takano Y, Miki H. Mg2+-dependent interactions of ATP with the cystathionine-β-synthase (CBS) domains of a magnesium transporter. J Biol Chem. 2014;289:14731–9.

    Article  CAS  Google Scholar 

  5. Funato Y, Furutani K, Kurachi Y, Miki H. CrossTalk proposal: CNNM proteins are Na+ /Mg2+ exchangers playing a central role in transepithelial Mg2+ (re)absorption. J Physiol. 2018;596:743–6.

    Article  CAS  Google Scholar 

  6. Polok B, Escher P, Ambresin A, Chouery E, Bolay S, Meunier I, et al. Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am J Hum Genet. 2009;84:259–65.

    Article  CAS  Google Scholar 

  7. Parry DA, Mighell AJ, El-Sayed W, Shore RC, Jalili IK, Dollfus H, et al. Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am J Hum Genet. 2009;84:266–73.

    Article  CAS  Google Scholar 

  8. Yamazaki D, Miyata H, Funato Y, Fujihara Y, Ikawa M, Miki H. The Mg2+ transporter CNNM4 regulates sperm Ca2+ homeostasis and is essential for reproduction. J Cell Sci. 2016;129:1940–9.

    Article  CAS  Google Scholar 

  9. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, et al. A sperm ion channel required for sperm motility and male fertility. Nature. 2001;413:603–9.

    Article  CAS  Google Scholar 

  10. Funato Y, Yamazaki D, Mizukami S, Du L, Kikuchi K, Miki H. Membrane protein CNNM4-dependent Mg2+ efflux suppresses tumor progression. J Clin Invest. 2014;124:5398–410.

    Article  Google Scholar 

  11. Hardy S, Uetani N, Wong N, Kostantin E, Labbé DP, Bégin LR, et al. The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Oncogene. 2015;34:986–95.

    Article  CAS  Google Scholar 

  12. Gulerez I, Funato Y, Wu H, Yang M, Kozlov G, Miki H, et al. Phosphocysteine in the PRL-CNNM pathway mediates magnesium homeostasis. EMBO Rep. 2016;17:1890–1900.

    Article  CAS  Google Scholar 

  13. Giménez-Mascarell P, Oyenarte I, Hardy S, Breiderhoff T, Stuiver M, Kostantin E, et al. Structural basis of the oncogenic interaction of phosphatase PRL-1 with the magnesium transporter CNNM2. J Biol Chem. 2017;292:786–801.

    Article  Google Scholar 

  14. Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B. et al. A phosphatase associated with metastasis of colorectal cancer. Science. 2001;294:1343–6.

    Article  CAS  Google Scholar 

  15. Bessette DC, Qiu D, Pallen CJ. PRL PTPs: mediators and markers of cancer progression. Cancer Metastas- Rev. 2008;27:231–52.

    Article  CAS  Google Scholar 

  16. O’Connor DT, Burton D, Deftos LJ. Chromogranin A: immunohistology reveals its universal occurrence in normal polypeptide hormone producing endocrine glands. Life Sci. 1983;33:1657–63.

    Article  Google Scholar 

  17. Ito S. The enteric surface coat on cat intestinal microvilli. J Cell Biol. 1965;27:475–91.

    Article  CAS  Google Scholar 

  18. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by maker gene Lgr5. Nature. 2007;449:1003–7.

    Article  CAS  Google Scholar 

  19. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    Article  CAS  Google Scholar 

  20. Sato T, Stange DE, Ferrante M, Vries RG, van Es JH, van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.

    Article  CAS  Google Scholar 

  21. Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science. 2012;338:108–13.

    Article  CAS  Google Scholar 

  22. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255–9.

    Article  CAS  Google Scholar 

  23. Vinuesa AG, Sancho R, García-Limones C, Behrens A, ten Dijke P, Calzado MA, et al. Vanilloid receptor-1 regulates neurogenic inflammation in colon and protects mice from colon cancer. Cancer Res. 2012;72:1705–16.

    Article  CAS  Google Scholar 

  24. de Jong PR, Takahashi N, Harris AR, Lee J, Bertin S, Jeffries J, et al. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis. J Clin Invest. 2014;124:3793–806.

    Article  Google Scholar 

  25. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.

    Article  CAS  Google Scholar 

  26. Arteaga CL, Johnson DH. Tyrosine kinase inhibitors-ZD1839 (Iressa). Curr Opin Oncol. 2001;13:491–8.

    Article  CAS  Google Scholar 

  27. Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell. 2017;20:177–90.

    Article  CAS  Google Scholar 

  28. Perše M, Cerar A. Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol. 2012;2012:718617.

    Article  Google Scholar 

  29. Yang F, Ma L, Cao X, Wang K, Zheng J. Divalent cations activate TRPV1 through promoting conformational change of the extracellular region. J Gen Physiol. 2014;143:91–103.

    Article  CAS  Google Scholar 

  30. Luo J, Stewart R, Berdeaux R, Hu H. Tonic inhibition of TRPV3 by Mg2+ in mouse epidermal keratinocytes. J Invest Dermatol. 2012;132:2158–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Masahiro Aoki (Aichi Cancer Center Research Institute) for the detailed information about the organoid culture of the colon epithelia. We are also grateful to Ms. Yayoi Tsumori (Osaka University) for skillful technical assistance.

Author contributions

DY performed the experiments and analyzed the results, with contributions from AH, YF, NHT, MXM, YM, and TS. HM and DY conceived the study design. HM wrote the paper with contributions from DY. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Miki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, D., Hasegawa, A., Funato, Y. et al. Cnnm4 deficiency suppresses Ca2+ signaling and promotes cell proliferation in the colon epithelia. Oncogene 38, 3962–3969 (2019). https://doi.org/10.1038/s41388-019-0682-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0682-0

This article is cited by

Search

Quick links