Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxygen sensor FIH inhibits HACE1-dependent ubiquitination of Rac1 to enhance metastatic potential in breast cancer cells

Abstract

Oxygen is an indispensable element for cell survival and maintenance. Eukaryotic cells are equipped with a series of signaling pathways that cope with hypoxia. The dioxygenase factor inhibiting HIF (FIH) is an oxygen sensor that regulates the transcriptional activity of hypoxia-inducible factor (HIF) through asparaginyl hydroxylation. Given that HACE1 was detected as an FIH-interacting protein in a previous proteomics study, we tested whether the E3 ubiquitin ligase HACE1 is a substrate for FIH. FIH interacted with HACE1, in cells and in vitro, and was determined to hydroxylate HACE1 at the N191 residue within the ankyrin repeat domain. Hydroxylation disrupted the physical association between HACE1 and its representative target, Rac1. Under hypoxic conditions, HACE1 is less hydroxylated due to the inactivation of FIH, and subsequently functions to ubiquitinate the active form of Rac1, leading to the proteasomal degradation of Rac1. Since Rac1 stimulates cell movement, HACE1 inhibits cell migration and invasion in breast cancer by removing active Rac1. Such an effect of HACE1 is reinforced under hypoxia because HACE1 escapes from FIH-mediated hydroxylation. In clinical datasets, HACE1 downregulation is associated with poor outcomes in patients with breast cancer. Taken together, FIH is likely to act as an oxygen sensor that determines oxygen-dependent cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Semenza GL. Hypoxia and human disease-and the Journal of Molecular Medicine. J Mol Med. 2007;85:1293–4.

    Article  CAS  Google Scholar 

  2. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via denovo protein-synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447–54.

    Article  CAS  Google Scholar 

  3. Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1 alpha and VHL to mediate repression of HIF-1 transcriptional activity. Gene Dev. 2001;15:2675–86.

    Article  CAS  Google Scholar 

  4. Yu F, White SB, Zhao Q, Lee FS. HIF-1 alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA. 2001;98:9630–5.

    Article  CAS  Google Scholar 

  5. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Bio. 2004;5:343–54.

    Article  CAS  Google Scholar 

  6. Pettersen EO, Juul NO, Ronning OW. Regulation of protein-metabolism of human-cells during and after acute-hypoxia. Cancer Res. 1986;46:4346–51.

    CAS  PubMed  Google Scholar 

  7. Lee SD, Kim W, Jeong JW, Park JW, Kim JEAK-1. a SIRT2 inhibitor, destabilizes HIF-1alpha and diminishes its transcriptional activity during hypoxia. Cancer Lett. 2016;373:138–45.

    Article  CAS  Google Scholar 

  8. Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014;21:301–7.

    Article  CAS  Google Scholar 

  9. Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW, et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem. 2002;277:26351–5.

    Article  CAS  Google Scholar 

  10. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16:1466–71.

    Article  CAS  Google Scholar 

  11. Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML, et al. Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci USA. 2006;103:14767–72.

    Article  CAS  Google Scholar 

  12. Cockman ME, Webb JD, Kramer HB, Kessler BM, Ratcliffe PJ. Proteomics-based identification of novel factor inhibiting hypoxia-inducible factor (FIH) substrates indicates widespread asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Mol Cell Proteom. 2009;8:535–46.

    Article  CAS  Google Scholar 

  13. Anglesio MS, Evdokimova V, Melnyk N, Zhang L, Fernandez CV, Grundy PE, et al. Differential expression of a novel ankyrin containing E3 ubiquitin-protein ligase, Hace1, in sporadic Wilms’ tumor versus normal kidney. Hum Mol Genet. 2004;13:2061–74.

    Article  CAS  Google Scholar 

  14. Torrino S, Visvikis O, Doye A, Boyer L, Stefani C, Munro P, et al. The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1. Dev Cell. 2011;21:959–65.

    Article  CAS  Google Scholar 

  15. Liu Z, Chen P, Gao H, Gu Y, Yang J, Peng H, et al. Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression. Cancer Cell. 2014;26:106–20.

    Article  Google Scholar 

  16. Tortola L, Nitsch R, Bertrand MJM, Kogler M, Redouane Y, Kozieradzki I, et al. The tumor suppressor Hace1 Is a critical regulator of TNFR1-mediated cell fate. Cell Rep. 2016;16:3414.

    Article  CAS  Google Scholar 

  17. Zhang L, Anglesio MS, O’Sullivan M, Zhang F, Yang G, Sarao R, et al. The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers. Nat Med. 2007;13:1060–9.

    Article  CAS  Google Scholar 

  18. Castillo-Lluva S, Tan CT, Daugaard M, Sorensen PH, Malliri A. The tumour suppressor HACE1 controls cell migration by regulating Rac1 degradation. Oncogene. 2013;32:1735–42.

    Article  CAS  Google Scholar 

  19. Goka ET, Lippman ME. Loss of the E3 ubiquitin ligase HACE1 results in enhanced Rac1 signaling contributing to breast cancer progression. Oncogene. 2015;34:5395–405.

    Article  CAS  Google Scholar 

  20. Rodriguez J, Pilkington R, Garcia Munoz A, Nguyen LK, Rauch N, Kennedy S, et al. Substrate-trapped interactors of PHD3 and FIH cluster in distinct signaling pathways. Cell Rep. 2016;14:2745–60.

    Article  CAS  Google Scholar 

  21. Cockman ME, Webb JD, Ratcliffe PJ. FIH-dependent asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Ann N Y Acad Sci. 2009;1177:9–18.

    Article  CAS  Google Scholar 

  22. Elkins JM, Hewitson KS, McNeill LA, Seibel JF, Schlemminger I, Pugh CW, et al. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 alpha. J Biol Chem. 2003;278:1802–6.

    Article  CAS  Google Scholar 

  23. Linke S, Stojkoski C, Kewley RJ, Booker GW, Whitelaw ML, Peet DJ. Substrate requirements of the oxygen-sensing asparaginyl hydroxylase factor-inhibiting hypoxia-inducible factor. J Biol Chem. 2004;279:14391–7.

    Article  CAS  Google Scholar 

  24. Hewitson KS, Holmes SL, Ehrismann D, Hardy AP, Chowdhury R, Schofield CJ, et al. Evidence that two enzyme-derived histidine ligands are sufficient for iron binding and catalysis by factor inhibiting HIF (FIH). J Biol Chem. 2008;283:25971–8.

    Article  CAS  Google Scholar 

  25. Wilkins SE, Abboud MI, Hancock RL, Schofield CJ. Targeting protein-protein interactions in the HIF system. ChemMedChem. 2016;11:773–86.

    Article  CAS  Google Scholar 

  26. Karttunen S, Duffield M, Scrimgeour NR, Squires L, Lim WL, Dallas ML, et al. Oxygen-dependent hydroxylation by FIH regulates the TRPV3 ion channel. J Cell Sci. 2015;128:225–31.

    Article  CAS  Google Scholar 

  27. Yang M, Chowdhury R, Ge W, Hamed RB, McDonough MA, Claridge TD, et al. Factor-inhibiting hypoxia-inducible factor (FIH) catalyses the post-translational hydroxylation of histidinyl residues within ankyrin repeat domains. FEBS J. 2011;278:1086–97.

    Article  CAS  Google Scholar 

  28. Kallberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, et al. Template-based protein structure modeling using the RaptorX web server. Nat Protoc. 2012;7:1511–22.

    Article  CAS  Google Scholar 

  29. Bosco EE, Mulloy JC, Zheng Y. Rac1 GTPase: a “Rac” of all trades. Cell Mol Life Sci. 2009;66:370–4.

    Article  CAS  Google Scholar 

  30. Andrio E, Lotte R, Hamaoui D, Cherfils J, Doye A, Daugaard M, et al. Identification of cancer-associated missense mutations in hace1 that impair cell growth control and Rac1 ubiquitylation. Sci Rep. 2017;7:44779.

    Article  CAS  Google Scholar 

  31. Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC, et al. Cytoplasmic location of factor-inhibiting hypoxia-inducible factor is associated with an enhanced hypoxic response and a shorter survival in invasive breast cancer. Breast Cancer Res. 2007;9:R89.

    Article  Google Scholar 

  32. Yan M, Rayoo M, Takano EA, Investigators KC, Fox SB. BRCA1 tumours correlate with a HIF-1alpha phenotype and have a poor prognosis through modulation of hydroxylase enzyme profile expression. Br J Cancer. 2009;101:1168–74.

    Article  CAS  Google Scholar 

  33. Hyseni A, van der Groep P, van der Wall E, van Diest PJ. Subcellular FIH-1 expression patterns in invasive breast cancer in relation to HIF-1alpha expression. Cell Oncol. 2011;34:565–70.

    Article  CAS  Google Scholar 

  34. Kretschmer C, Sterner-Kock A, Siedentopf F, Schoenegg W, Schlag PM, Kemmner W. Identification of early molecular markers for breast cancer. Mol Cancer. 2011;10:15.

    Article  CAS  Google Scholar 

  35. Brunner AL, Li J, Guo X, Sweeney RT, Varma S, Zhu SX, et al. A shared transcriptional program in early breast neoplasias despite genetic and clinical distinctions. Genome Biol. 2014;15:R71.

    Article  Google Scholar 

  36. Lesurf R, Aure MR, Mork HH, Vitelli V, Oslo Breast Cancer Research C, Lundgren S, et al. Molecular features of subtype-specific progression from ductal carcinoma in situ to invasive breast cancer. Cell Rep. 2016;16:1166–79.

    Article  CAS  Google Scholar 

  37. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Article  Google Scholar 

  38. Zucchi I, Mento E, Kuznetsov VA, Scotti M, Valsecchi V, Simionati B, et al. Gene expression profiles of epithelial cells microscopically isolated from a breast-invasive ductal carcinoma and a nodal metastasis. Proc Natl Acad Sci USA. 2004;101:18147–52.

    Article  CAS  Google Scholar 

  39. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol. 2007;25:1239–46.

    Article  CAS  Google Scholar 

  40. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.

    Article  Google Scholar 

  41. Coleman ML, McDonough MA, Hewitson KS, Coles C, Mecinovic J, Edelmann M, et al. Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J Biol Chem. 2007;282:24027–38.

    Article  CAS  Google Scholar 

  42. Janke K, Brockmeier U, Kuhlmann K, Eisenacher M, Nolde J, Meyer HE, et al. Factor inhibiting HIF-1 (FIH-1) modulates protein interactions of apoptosis-stimulating p53 binding protein 2 (ASPP2). J Cell Sci. 2013;126:2629–40.

    Article  CAS  Google Scholar 

  43. Lachance V, Degrandmaison J, Marois S, Robitaille M, Genier S, Nadeau S, et al. Ubiquitylation and activation of a Rab GTPase is promoted by a beta(2)AR-HACE1 complex. J Cell Sci. 2014;127:111–23.

    Article  CAS  Google Scholar 

  44. Palicharla VR, Maddika S. HACE1 mediated K27 ubiquitin linkage leads to YB-1 protein secretion. Cell Signal. 2015;27:2355–62.

    Article  CAS  Google Scholar 

  45. Giaccia A, Siim BG, Johnson RS. HIF-1 as a target for drug development. Nat Rev Drug Discov. 2003;2:803–11.

    Article  CAS  Google Scholar 

  46. Lancaster DE, McDonough MA, Schofield CJ. Factor inhibiting hypoxia-inducible factor (FIH) and other asparaginyl hydroxylases. Biochem Soc Trans. 2004;32:943–5.

    Article  CAS  Google Scholar 

  47. Scholz CC, Rodriguez J, Pickel C, Burr S, Fabrizio JA, Nolan KA, et al. FIH regulates cellular metabolism through hydroxylation of the deubiquitinase OTUB1. PLoS Biol. 2016;14:e1002347.

    Article  Google Scholar 

  48. Ferguson JE 3rd, Wu Y, Smith K, Charles P, Powers K, Wang H, et al. ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol Cell Biol. 2007;27:6407–19.

    Article  CAS  Google Scholar 

  49. So JH, Kim JD, Yoo KW, Kim HT, Jung SH, Choi JH, et al. FIH-1, a novel interactor of mindbomb, functions as an essential anti-angiogenic factor during zebrafish vascular development. PLoS ONE. 2014;9:e109517.

    Article  Google Scholar 

  50. Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352:175–80.

    Article  CAS  Google Scholar 

  51. Semenza GL. The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim Biophys Acta. 2016;1863:382–91.

    Article  CAS  Google Scholar 

  52. Hordijk PL. Regulation of NADPH oxidases: the role of Rac proteins. Circ Res. 2006;98:453–62.

    Article  CAS  Google Scholar 

  53. Masson N, Singleton RS, Sekirnik R, Trudgian DC, Ambrose LJ, Miranda MX, et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep. 2012;13:251–7.

    Article  CAS  Google Scholar 

  54. Daugaard M, Nitsch R, Razaghi B, McDonald L, Jarrar A, Torrino S, et al. Hace1 controls ROS generation of vertebrate Rac1-dependent NADPH oxidase complexes. Nat Commun. 2013;4:2180.

    Article  Google Scholar 

  55. Zhang L, Chen X, Sharma P, Moon M, Sheftel AD, Dawood F, et al. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. Nat Commun. 2014;5:3430.

    Article  Google Scholar 

  56. Chun YS, Choi E, Kim GT, Lee MJ, Lee MJ, Lee SE, et al. Zinc induces the accumulation of hypoxia-inducible factor (HIF)-1alpha, but inhibits the nuclear translocation of HIF-1beta, causing HIF-1 inactivation. Biochem Biophys Res Commun. 2000;268:652–6.

    Article  CAS  Google Scholar 

  57. Lee GY, Shin SH, Shin HW, Chun YS, Park JW. NDRG3 lowers the metastatic potential in prostate cancer as a feedback controller of hypoxia-inducible factors. Exp Mol Med. 2018;50:61.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the National Research Foundation of Korea (2017R1A4A1015015; to J.-W.P).

Author contributions

Conception and design: I.K., J.-W.P. Development of methodology: I.K. Acquisition of data: I.K., S.-H.S., J.E.L. Analysis and interpretation of data: I.K., S.-H.S. Writing, review, and/or revision of the manuscript: I.K., J.-W.P. Study supervision: J.-W.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Wan Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I., Shin, SH., Lee, J.E. et al. Oxygen sensor FIH inhibits HACE1-dependent ubiquitination of Rac1 to enhance metastatic potential in breast cancer cells. Oncogene 38, 3651–3666 (2019). https://doi.org/10.1038/s41388-019-0676-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0676-y

This article is cited by

Search

Quick links