Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis

Abstract

Major tumor suppressor and transcription factor p53 coordinates expression of many genes hence affecting critical cellular functions including cell cycle, senescence, and apoptosis. The NR4A family of orphan receptors (NR4A1-3) belongs to the superfamily of nuclear receptors. They regulate genes involved in proliferation, cell migration, and apoptosis. In this study, we report an identification of NR4A3 as a direct transcriptional target of p53. Using various techniques, we showed that p53 directly bound the promoter of NR4A3 gene and induced its transcription. Functionally, over-expression of NR4A3 attenuated proliferation of cancer cells and promoted apoptosis by augmenting the expression of pro-apoptotic genes, PUMA and Bax. Knockdown of NR4A3 reversed these phenotypes. Importantly, NR4A3 exhibited tumor suppressive functions both in p53-dependent and independent manner. In addition, NR4A3 physically interacted with an anti-apoptotic Bcl-2 protein hence sequestering it from blunting apoptosis. These observations were corroborated by the bioinformatics analysis, which demonstrated a correlation between high levels of NR4A3 expression and better survival of breast and lung cancer patients. Collectively, our studies revealed a novel transcriptional target of p53, NR4A3, which triggers apoptosis and thus likely has a tumor suppressive role in breast and lung cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A, et al. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell death & Dis. 2014;5:e1528.

    Article  CAS  Google Scholar 

  2. Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell. 1992;70:523–6.

    Article  CAS  Google Scholar 

  3. Barlev NA, Sayan BS, Candi E, Okorokov AL. The microRNA and p53 families join forces against cancer. Cell Death Differ. 2010;17:373–5.

    Article  CAS  Google Scholar 

  4. Feng Z, Zhang C, Wu R, Hu W. Tumor suppressor p53 meets microRNAs. J Mol Cell Biol. 2011;3:44–50.

    Article  CAS  Google Scholar 

  5. Hermeking H. p53 enters the microRNA world. Cancer Cell. 2007;12:414–8.

    Article  CAS  Google Scholar 

  6. Lezina L, Purmessur N, Antonov AV, Ivanova T, Karpova E, Krishan K, et al. miR-16 and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell death & Dis. 2013;4:e953.

    Article  CAS  Google Scholar 

  7. Pant V, Lozano G. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev. 2014;28:1739–51.

    Article  CAS  Google Scholar 

  8. Marouco D, Garabadgiu AV, Melino G, Barlev NA. Lysine-specific modifications ofp53: a matter of life and death? Oncotarget. 2013;4:1556–71.

    Article  Google Scholar 

  9. Fedorova OA, Moiseeva TN, Nikiforov AA, Tsimokha AS, Livinskaya VA, Hodson M, et al. Proteomic analysis of the 20S proteasome (PSMA3)-interacting proteins reveals a functional link between the proteasome and mRNA metabolism. Biochem Biophys Res Commun. 2011;416:258–65.

    Article  CAS  Google Scholar 

  10. Moiseeva TN, Bottrill A, Melino G, Barlev NA. DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget. 2013;4:1338–48.

    Article  Google Scholar 

  11. Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C, Soussi T. The UMD TP53 database and website: update and revisions. Hum Mutat. 2006;27:14–20.

    Article  CAS  Google Scholar 

  12. Amelio I, Melino G. The p53 family and the hypoxia-inducible factors (HIFs): determinants of cancer progression. Trends Biochem Sci. 2015;40:425–34.

    Article  CAS  Google Scholar 

  13. Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci. 2000;113(Pt 10):1661–70.

    CAS  PubMed  Google Scholar 

  14. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature. 2002;416:560–4.

    Article  CAS  Google Scholar 

  15. Murray-Zmijewski F, Slee EA, Lu X. A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol. 2008;9:702–12.

    Article  CAS  Google Scholar 

  16. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137:413–31.

    Article  CAS  Google Scholar 

  17. Innocente SA, Lee JM. p53 is a NF-Y- and p21-independent, Sp1-dependent repressor of cyclin B1 transcription. FEBS Lett. 2005;579:1001–7.

    Article  CAS  Google Scholar 

  18. Angeloni SV, Martin MB, Garcia-Morales P, Castro-Galache MD, Ferragut JA, Saceda M. Regulation of estrogen receptor-alpha expression by the tumor suppressor gene p53 in MCF-7 cells. J Endocrinol. 2004;180:497–504.

    Article  CAS  Google Scholar 

  19. Elias A, Wu J, Chen T. Tumor suppressor protein p53 negatively regulates human pregnane X receptor activity. Mol Pharmacol. 2013;83:1229–36.

    Article  CAS  Google Scholar 

  20. Iwano S, Shibahara N, Saito T, Kamataki T. Activation of p53 as a causal step for atherosclerosis induced by polycyclic aromatic hydrocarbons. FEBS Lett. 2006;580:890–3.

    Article  CAS  Google Scholar 

  21. Yu C, Yap N, Chen D, Cheng S. Modulation of hormone-dependent transcriptional activity of the glucocorticoid receptor by the tumor suppressor p53. Cancer Lett. 1997;116:191–6.

    Article  CAS  Google Scholar 

  22. Yu CL, Driggers P, Barrera-Hernandez G, Nunez SB, Segars JH, Cheng S. The tumor suppressor p53 is a negative regulator of estrogen receptor signaling pathways. Biochem Biophys Res Commun. 1997;239:617–20.

    Article  CAS  Google Scholar 

  23. Olefsky JM. Nuclear receptor minireview series. J Biol Chem. 2001;276:36863–4.

    Article  CAS  Google Scholar 

  24. Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD, et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell. 2001;8:1243–54.

    Article  CAS  Google Scholar 

  25. Beard JA, Tenga A, Hills J, Hoyer JD, Cherian MT, Wang YD, et al. The orphan nuclear receptor NR4A2 is part of a p53-microRNA-34 network. Sci Rep. 2016;6:25108.

    Article  CAS  Google Scholar 

  26. Zhao BX, Chen HZ, Lei NZ, Li GD, Zhao WX, Zhan YY, et al. p53 mediates the negative regulation of MDM2 by orphan receptor TR3. EMBO J. 2006;25:5703–15.

    Article  CAS  Google Scholar 

  27. Lezina L, Aksenova V, Fedorova O, Malikova D, Shuvalov O, Antonov AV, et al. KMT Set7/9 affects genotoxic stress response via the Mdm2 axis. Oncotarget. 2015;6:25843–55.

    Article  Google Scholar 

  28. Szak ST, Mays D, Pietenpol JA. Kinetics of p53 binding to promoter sites in vivo. Mol Cell Biol. 2001;21:3375–86.

    Article  CAS  Google Scholar 

  29. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.

    Article  CAS  Google Scholar 

  30. Kaeser MD, Iggo RD. Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci USA. 2002;99:95–100.

    Article  CAS  Google Scholar 

  31. Espinosa JM, Verdun RE, Emerson BM. p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol Cell. 2003;12:1015–27.

    Article  CAS  Google Scholar 

  32. Shibue T, Suzuki S, Okamoto H, Yoshida H, Ohba Y, Takaoka A, et al. Differential contribution of Puma and Noxa in dual regulation of p53-mediated apoptotic pathways. EMBO J. 2006;25:4952–62.

    Article  CAS  Google Scholar 

  33. Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27(Suppl 1):S71–83.

    Article  CAS  Google Scholar 

  34. Green DR, Reed JC. Mitochondria and apoptosis. Sci (New Y, NY). 1998;281:1309–12.

    Article  CAS  Google Scholar 

  35. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes & Dev. 1999;13:1899–911.

    Article  CAS  Google Scholar 

  36. Vander Heiden MG, Thompson CB. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol. 1999;1:E209–216.

    Article  Google Scholar 

  37. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell. 2004;116:527–40.

    Article  CAS  Google Scholar 

  38. Kurakula K, Koenis DS, van Tiel CM, de Vries CJ. NR4A nuclear receptors are orphans but not lonesome. Biochim Et Biophys Acta. 2014;1843:2543–55.

    Article  CAS  Google Scholar 

  39. Zhivotovsky B, Orrenius S, Brustugun OT, Doskeland SO. Injected cytochrome c induces apoptosis. Nature. 1998;391:449–50.

    Article  CAS  Google Scholar 

  40. Deutsch AJA, Rinner B, Pichler M, Prochazka K, Pansy K, Bischof M, et al. NR4A3 suppresses lymphomagenesis through induction of proapoptotic genes. Cancer Res. 2017;77:2375–86.

    Article  CAS  Google Scholar 

  41. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.

    Article  CAS  Google Scholar 

  42. Charni M, Molchadsky A, Goldstein I, Solomon H, Tal P, Goldfinger N, et al. Novel p53 target genes secreted by the liver are involved in non-cell-autonomous regulation. Cell Death Differ. 2016;23:509–20.

    Article  CAS  Google Scholar 

  43. Cronauer MV, Schulz WA, Burchardt T, Ackermann R, Burchardt M. Inhibition of p53 function diminishes androgen receptor-mediated signaling in prostate cancer cell lines. Oncogene. 2004;23:3541–9.

    Article  CAS  Google Scholar 

  44. Yeh CM, Chang LY, Lin SH, Chou JL, Hsieh HY, Zeng LH, et al. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer. Sci Rep. 2016;6:31690.

    Article  CAS  Google Scholar 

  45. Zhao Y, Bruemmer D. NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler Thromb Vasc Biol. 2010;30:1535–41.

    Article  CAS  Google Scholar 

  46. Malewicz M, Kadkhodaei B, Kee N, Volakakis N, Hellman U, Viktorsson K, et al. Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair. Genes & Dev. 2011;25:2031–40.

    Article  CAS  Google Scholar 

  47. Stark AM, Pfannenschmidt S, Tscheslog H, Maass N, Rosel F, Mehdorn HM, et al. Reduced mRNA and protein expression of BCL-2 versus decreased mRNA and increased protein expression of BAX in breast cancer brain metastases: a real-time PCR and immunohistochemical evaluation. Neurol Res. 2006;28:787–93.

    Article  CAS  Google Scholar 

  48. Gibson LF, Fortney J, Magro G, Ericson SG, Lynch JP, Landreth KS. Regulation of BAX and BCL-2 expression in breast cancer cells by chemotherapy. Breast Cancer Res Treat. 1999;55:107–17.

    Article  CAS  Google Scholar 

  49. Lee SO, Li X, Khan S, Safe S. Targeting NR4A1 (TR3) in cancer cells and tumors. Expert Opin Ther Targets. 2011;15:195–206.

    Article  Google Scholar 

  50. Kitagawa H, Ray WJ, Glantschnig H, Nantermet PV, Yu Y, Leu CT, et al. A regulatory circuit mediating convergence between Nurr1 transcriptional regulation and Wnt signaling. Mol Cell Biol. 2007;27:7486–96.

    Article  CAS  Google Scholar 

  51. Gao W, Fu Y, Yu C, Wang S, Zhang Y, Zong C, et al. Elevation of NR4A3 expression and its possible role in modulating insulin expression in the pancreatic beta cell. PLoS ONE. 2014;9:e91462.

    Article  Google Scholar 

  52. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell. 2006;124:1283–98.

    Article  CAS  Google Scholar 

  53. Amelio I, Tsvetkov PO, Knight RA, Lisitsa A, Melino G, Antonov AV. SynTarget: an online tool to test the synergetic effect of genes on survival outcome in cancer. Cell Death Differ. 2016;23:912.

    Article  CAS  Google Scholar 

  54. Antonov AV. BioProfiling.de: analytical web portal for high-throughput cell biology. Nucleic Acids Res. 2011;39:W323–327.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

O.F., A.P. and E.V. carried out chromatin immunoprecipitation, Luciferase assay, quantitative PCR, cell-cycle analysis, colony formation assay, immunofluorescence, wound-healing and real-time cell migration assay and acknowledge the support from RCF grant 18-75-10076. A.D., O.S., N.B. carried out annexin V, co-immunoprecipitation interaction assay and the bioinformatics analysis and acknowledge the support from RFBR grant 18-29-09144. We appreciate Dr Mikhal Maliewitz (MRC Toxicology, Leicester) for a gift of NR4A1 and NR4A2 antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai A. Barlev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, O., Petukhov, A., Daks, A. et al. Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis. Oncogene 38, 2108–2122 (2019). https://doi.org/10.1038/s41388-018-0566-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0566-8

This article is cited by

Search

Quick links