Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dedifferentiation process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer

Abstract

Cancer stem cells (CSCs) possess the capacity for self-renewal and the potential to differentiate into non-CSCs. The recent discoveries of dynamic equilibrium between CSCs and non-CSCs revealed the significance of acquiring CSC-like properties in non-CSCs as an important process in progression of cancer. The mechanism underlying acquisition of CSC-like properties has mainly been investigated in the context of epithelial–mesenchymal transition. Here, we demonstrate the dedifferentiation process may be an alternative mechanism in acquisition of CSC-like properties in human colorectal cancer cells. By exploring the single-cell gene expression analysis of organoids developed from CD44+ CSCs, we identified TWIST1 as a key molecule for maintaining the undifferentiated state of cancer cells. Consistent with the finding, we found that TGF-beta signaling pathway, a regulator of TWIST1, was specifically activated in the undifferentiated CD44+ CSCs in human colorectal cancer using microarray-based gene expression analysis and quantitative pathology imaging system. Furthermore, we showed that external stimulation with TGF-beta and the induction of TWIST1 converted CD44 non-CSCs into the undifferentiated CD44+ CSCs, leading to the significant increment of CSCs in xenograft models. This study strongly suggests dedifferentiation driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  Google Scholar 

  2. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  CAS  Google Scholar 

  3. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    Article  CAS  Google Scholar 

  4. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007;104:10158–63.

    Article  CAS  Google Scholar 

  5. Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells. J Clin Oncol. 2008;26:2806–12.

    Article  Google Scholar 

  6. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311–20.

    Article  CAS  Google Scholar 

  7. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, et al. Highly purified CD44+prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 2006;25:1696–708.

    Article  CAS  Google Scholar 

  8. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol. 2011;29:1120–7.

    Article  CAS  Google Scholar 

  9. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 2008;105:13427–32.

    Article  CAS  Google Scholar 

  10. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30.

    Article  CAS  Google Scholar 

  11. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110.

    Article  Google Scholar 

  12. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  Google Scholar 

  13. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE. 2008;3:e2888.

    Article  Google Scholar 

  14. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145:926–40.

    Article  CAS  Google Scholar 

  15. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013;154:61–74.

    Article  CAS  Google Scholar 

  16. Beck B, Lapouge G, Rorive S, Drogat B, Desaedelaere K, Delafaille S, et al. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell. 2015;16:67–79.

    Article  CAS  Google Scholar 

  17. Beerling E, Seinstra D, de Wit E, Kester L, van der Velden D, Maynard C, et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 2016;14:2281–8.

    Article  CAS  Google Scholar 

  18. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98.

    Article  CAS  Google Scholar 

  19. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.

    Article  CAS  Google Scholar 

  20. Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18:827–38.

    Article  CAS  Google Scholar 

  21. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    Article  CAS  Google Scholar 

  22. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumor growth in immunodeficient mice. Nature. 2007;445:106–10.

    Article  Google Scholar 

  23. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.

    Article  CAS  Google Scholar 

  24. Medema JP, Vermeulen L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature. 2011;474:318–26.

    Article  CAS  Google Scholar 

  25. Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell. 2009;5:504–14.

    Article  CAS  Google Scholar 

  26. Suva ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD, et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell. 2014;157:580–94.

    Article  CAS  Google Scholar 

  27. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511:246–50.

    Article  CAS  Google Scholar 

  28. Zhu P, Wang Y, He L, Huang G, Du Y, Zhang G, et al. ZIC2-dependent OCT4 activation drives self-renewal of human liver cancer stem cells. J Clin Invest. 2015;125:3795–808.

    Article  Google Scholar 

  29. Mullen AC, Orlando DA, Newman JJ, Loven J, Kumar RM, Bilodeau S, et al. Master transcription factors determine cell-type-specific responses to TGF-beta signaling. Cell. 2011;147:565–76.

    Article  CAS  Google Scholar 

  30. Oshimori N, Fuchs E. The harmonies played by TGF-beta in stem cell biology. Cell Stem Cell. 2012;11:751–64.

    Article  CAS  Google Scholar 

  31. Jiang J, Ng HH. TGFbeta and SMADs talk to NANOG in human embryonic stem cells. Cell Stem Cell. 2008;3:127–8.

    Article  CAS  Google Scholar 

  32. Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D, et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011;8:511–24.

    Article  CAS  Google Scholar 

  33. Shvab A, Haase G, Ben-Shmuel A, Gavert N, Brabletz T, Dedhar S, et al. Induction of the intestinal stem cell signature gene SMOC-2 is required for L1-mediated colon cancer progression. Oncogene. 2016;35:549–57.

    Article  CAS  Google Scholar 

  34. Barriga FM, Montagni E, Mana M, Mendez-Lago M, Hernando-Momblona X, Sevillano M, et al. Mex3a marks a slowly dividing subpopulation of Lgr5+intestinal stem cells. Cell Stem Cell. 2017;20:801–16 e807.

    Article  CAS  Google Scholar 

  35. de Sousa EMF, Colak S, Buikhuisen J, Koster J, Cameron K, de Jong JH, et al. Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell. 2011;9:476–85.

    Article  Google Scholar 

  36. Jung P, Sommer C, Barriga FM, Buczacki SJ, Hernando-Momblona X, Sevillano M, et al. Isolation of human colon stem cells using surface expression of PTK7. Stem Cell Rep. 2015;5:979–87.

    Article  CAS  Google Scholar 

  37. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6.

    Article  CAS  Google Scholar 

  38. Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, et al. Metastasis-associated gene expression changes predict poor outcomes in patients with dukes stage B and C colorectal cancer. Clin Cancer Res. 2009;15:7642–51.

    Article  CAS  Google Scholar 

  39. Wu Y, Tran T, Dwabe S, Sarkissyan M, Kim J, Nava M, et al. A83-01 inhibits TGF-beta-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells. Breast Cancer Res Treat. 2017;163:449–60.

    Article  CAS  Google Scholar 

  40. Ovadya Y, Krizhanovsky V. A new twist in kidney fibrosis. Nat Med. 2015;21:975–7.

    Article  CAS  Google Scholar 

  41. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–34.

    Article  CAS  Google Scholar 

  42. Foroutan M, Cursons J, Hediyeh-Zadeh S, Thompson EW, Davis MJ. A Transcriptional program for detecting TGFbeta-induced EMT in cancer. Mol Cancer Res. 2017;15:619–31.

    Article  CAS  Google Scholar 

  43. Yaeger R, Chatila WK, Lipsyc MD, Hechtman JF, Cercek A, Sanchez-Vega F, et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell. 2018;33:125–36 e123.

    Article  CAS  Google Scholar 

  44. Pino MS, Kikuchi H, Zeng M, Herraiz MT, Sperduti I, Berger D, et al. Epithelial to mesenchymal transition is impaired in colon cancer cells with microsatellite instability. Gastroenterology. 2010;138:1406–17.

    Article  CAS  Google Scholar 

  45. Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73:725–35.

    Article  CAS  Google Scholar 

  46. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell. 2005;16:1987–2002.

    Article  CAS  Google Scholar 

  47. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.

    Article  CAS  Google Scholar 

  48. Zhang B, Halder SK, Kashikar ND, Cho YJ, Datta A, Gorden DL, et al. Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology. 2010;138:969–80. e961–3

    Article  CAS  Google Scholar 

  49. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

    Article  CAS  Google Scholar 

  50. Wang D, Rai B, Qi F, Liu T, Wang J, Wang X, et al. Influence of the Twist gene on the invasion and metastasis of colon cancer. Oncol Rep. 2018;39:31–44.

    CAS  PubMed  Google Scholar 

  51. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499–507.

    Article  CAS  Google Scholar 

  52. Kim J, Orkin SH. Embryonic stem cell-specific signatures in cancer: insights into genomic regulatory networks and implications for medicine. Genome Med. 2011;3:75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We especially thank N Torada, T Ueki, and T Manabe, S Nagai from the Department of Surgery and Oncology, Kyushu University, for providing clinical colorectal cancer tissues. They sincerely thank T. Isobe for development of methods and wonderful lecture. They also thank A. Yurino for providing mice, Yasufumi Uehara for taking confocal microscopy images, T Sugio, T Jiroumaru for performing microarray analysis. Co-workers at our labs, F Hanamura, Yumiko Uehara, K Yamaguchi, K Sagara, K Tsuchihashi, S Arita, supported this work. This study was supported in part by a Grant-in-Aid for Scientific Research (S) (to KA, #16H06391), a Grant-in-Aid for Scientific Research (A) (to KA, #16H02662), a Grant-in-Aid for Scientific Research (C) (to EB, #15K08970), a Grant-in-Aid for Young Scientists (A) (to Y Kikushige #16H06250), a Grant-in-Aid for Young Scientists (B) (to SA, #25860542), a Grant-in-Aid for Scientific Research (B) (to Y Kunisaki, #15H04859), from the JSPS, and a Grant-in-Aid for Scientific Research on Innovative Areas “Stem Cell Aging and Disease” (to TM and Y Kikushige, #25115002) from MEXT, Japan, and the “Project for Cancer Research and Therapeutic Evolution” (to KA, 18cm0106507h0003), and the “Practical Research for Innovative Cancer Control” (to Y Kikushige, 18ck0106196h0003) from Japan Agency for Medical Research and development, AMED, and the Shinnihon Foundation of Advanced Medical Treatment Research (to HA, Y Kikushige, and Y Kunisaki), and a collaborative research grant from AstraZeneca KK (to MN, AZKK Science Promotion Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eishi Baba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

Colorectal cancer tissues of 79 patients were obtained upon resection. All human studies were performed in accordance with Declaration of Helsinki principles and the guidelines of the Research Ethics Committee on Human Experimentation of Kyushu University (#28–95) and written informed consent was received from participants prior to inclusion in the study. Supplementary Tables S1 and S2 provide a summary of the clinical information of the colorectal cancer patients analyzed in this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, M., Kikushige, Y., Miyawaki, K. et al. Dedifferentiation process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene 38, 780–793 (2019). https://doi.org/10.1038/s41388-018-0480-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0480-0

This article is cited by

Search

Quick links