Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PRSS8 suppresses colorectal carcinogenesis and metastasis

A Correction to this article was published on 22 February 2021

This article has been updated

Abstract

The serine protease PRSS8 has shown important physiological and pathological functions, but its roles in cancer initiation and progression are unclear. We developed and dynamically characterized a conditional knockout Prss8fl/fl, p-Villin-Cre+ mouse model. We found that genetic deficiency of the Prss8 gene caused spontaneous colitis and an inflamed rectum at an early age and caused intestinal tumors at a late age, which were linked to increased intestinal cell proliferation and migration but decreased cell differentiation. Increased PRSS8 expression inhibited cancer cell growth and metastasis in nude mice and inhibited cancer cell migration, invasion, colony formation and tumor sphere formation in vitro, but decreased PRSS8 expression facilitated malignancies in vivo and in vitro. Gene profiling on manipulated cancer cells and intestinal epithelial cells of Prss8 mouse models, gene set enrichment analysis and mechanistic studies revealed that PRSS8 targeted the Wnt/β-catenin, epithelial-mesenchymal transition, and stem cell signaling pathways, which were further supported by the results from the TCGA data mining and validated by immunohistochemical staining on colorectal cancer tissue microarrays. In conclusion, PRSS8 is a novel tumor suppressor that plays critical roles in the suppression of colorectal carcinogenesis and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Yu JX, Chao L, Chao J. Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland. J Biol Chem. 1994;269:18843–8.

    Article  CAS  PubMed  Google Scholar 

  2. Hooper JD, Bowen N, Marshall H, Cullen LM, Sood R, Daniels R, et al. Localization, expression and genomic structure of the gene encoding the human serine protease testisin. Biochim Biophys Acta. 2000;1492:63–71.

    Article  CAS  PubMed  Google Scholar 

  3. Yu JX, Chao L, Ward DC, Chao J. Structure and chromosomal localization of the human prostasin (PRSS8) gene. Genomics. 1996;32:334–40.

    Article  CAS  PubMed  Google Scholar 

  4. Uchimura K, Hayata M, Mizumoto T, Miyasato Y, Kakizoe Y, Morinaga J, et al. The serine protease prostasin regulates hepatic insulin sensitivity by modulating TLR4 signalling. Nat Commun. 2014;5:3428.

    Article  PubMed  CAS  Google Scholar 

  5. Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev. 2007;7:800–8.

    Article  CAS  Google Scholar 

  6. Sarojini S, Tamir A, Lim H, Li S, Zhang S, Goy A, et al. Early detection biomarkers for ovarian cancer. J Oncol. 2012;2012:709049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mok SC, Chao J, Skates S, Wong K, Yiu GK, Muto MG, et al. Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst. 2001;93:1458–64.

    Article  CAS  PubMed  Google Scholar 

  8. Chen LM, Zhang X, Chai KX. Regulation of prostasin expression and function in the prostate. Prostate. 2004;59:1–12.

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi S, Suzuki S, Inaguma S, Ikeda Y, Cho YM, Hayashi N, et al. Down-regulated expression of prostasin in high-grade or hormone-refractory human prostate cancers. Prostate. 2003;54:187–93.

    Article  CAS  PubMed  Google Scholar 

  10. Chen LM, Chai KX. Prostasin serine protease inhibits breast cancer invasiveness and is transcriptionally regulated by promoter DNA methylation. Int J Cancer. 2002;97:323–9.

    Article  CAS  PubMed  Google Scholar 

  11. Chen LM, Verity NJ, Chai KX. Loss of prostasin (PRSS8) in human bladder transitional cell carcinoma cell lines is associated with epithelial-mesenchymal transition (EMT). BMC Cancer. 2009;9:377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sakashita K, Mimori K, Tanaka F, Tahara K, Inoue H, Sawada T, et al. Clinical significance of low expression of Prostasin mRNA in human gastric cancer. J Surg Oncol. 2008;98:559–64.

    Article  CAS  PubMed  Google Scholar 

  13. Bao Y, Li K, Guo Y, Wang Q, Li Z, Yang Y, et al. Tumor suppressor PRSS8 targets Sphk1/S1P/Stat3/Akt signaling in colorectal cancer. Oncotarget. 2016;7:26780–92.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bao Y, Wang Q, Guo Y, Chen Z, Li K, Yang Y, et al. PRSS8 methylation and its significance in esophageal squamous cell carcinoma. Oncotarget. 2016;7:28540–55.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Keppner A, Malsure S, Nobile A, Auberson M, Bonny O, Hummler E. Altered prostasin (CAP1/Prss8) expression favors inflammation and tissue remodeling in DSS-induced colitis. Inflamm Bowel Dis. 2016;22:2824–39.

    Article  PubMed  Google Scholar 

  16. Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002;295:1726–9.

    Article  CAS  PubMed  Google Scholar 

  17. Bao Y, Guo Y, Li Z, Fang W, Yang Y, Li X, et al. MicroRNA profiling in Muc2 knockout mice of colitis-associated cancer model reveals epigenetic alterations during chronic colitis malignant transformation. PLoS ONE. 2014;9:e99132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wong NA, Pignatelli M. Β-catenin–a linchpin in colorectal carcinogenesis? Am J Pathol. 2002;160:389–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120:3327–35.

    Article  CAS  PubMed  Google Scholar 

  20. Mokry M, Hatzis P, Schuijers J, Lansu N, Ruzius FP, Clevers H, et al. Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes. Nucleic Acids Res. 2012;40:148–58.

    Article  CAS  PubMed  Google Scholar 

  21. Paoni NF, Feldman MW, Gutierrez LS, Ploplis VA, Castellino FJ. Transcriptional profiling of the transition from normal intestinal epithelia to adenomas and carcinomas in the APCMin/+mouse. Physiol Genom. 2003;15:228–35.

    Article  CAS  Google Scholar 

  22. Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer. 2017;16:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. TCGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  CAS  Google Scholar 

  24. Rodriguez-Salas N, Dominguez G, Barderas R, Mendiola M, Garcia-Albeniz X, Maurel J, et al. Clinical relevance of colorectal cancer molecular subtypes. Crit Rev Oncol Hematol. 2017;109:9–19.

    Article  PubMed  Google Scholar 

  25. Buchanan FG, DuBois RN. Connecting COX-2 and Wnt in cancer. Cancer Cell. 2006;9:6–8.

    Article  CAS  PubMed  Google Scholar 

  26. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grivennikov SI. Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol. 2013;35:229–44.

    Article  CAS  PubMed  Google Scholar 

  28. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21:11–19.

    Article  CAS  PubMed  Google Scholar 

  29. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol. 2012;12:715–23.

    Article  CAS  Google Scholar 

  30. Yang K, Popova NV, Yang WC, Lozonschi I, Tadesse S, Kent S, et al. Interaction of Muc2 and Apc on Wnt signaling and in intestinal tumorigenesis: potential role of chronic inflammation. Cancer Res. 2008;68:7313–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., et al. Cancer genome landscapes. Science. 2013;339:1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Doki Y, Shiozaki H, Tahara H, Inoue M, Oka H, Iihara K, et al. Correlation between E-cadherin expression and invasiveness in vitro in a human esophageal cancer cell line. Cancer Res. 1993;53:3421–6.

    CAS  PubMed  Google Scholar 

  33. Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T, et al. Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res. 1993;53:1696–701.

    CAS  PubMed  Google Scholar 

  34. Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO, et al. Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res. 1994;54:3929–33.

    CAS  PubMed  Google Scholar 

  35. Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell. 2006;10:437–49.

    Article  CAS  PubMed  Google Scholar 

  36. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113:173–85.

    Article  CAS  PubMed  Google Scholar 

  37. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68:3645–54.

    Article  CAS  PubMed  Google Scholar 

  38. Baranwal S, Alahari SK. Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun. 2009;384:6–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastas Rev. 2009;28:151–66.

    Article  CAS  Google Scholar 

  40. Peters DE, Szabo R, Friis S, Shylo NA, Uzzun Sales K, Holmbeck K, et al. The membrane-anchored serine protease prostasin (CAP1/PRSS8) supports epidermal development and postnatal homeostasis independent of its enzymatic activity. J Biol Chem. 2014;289:14740–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev. 2013;13:727–38.

    Article  CAS  Google Scholar 

  42. Ordonez-Moran P, Dafflon C, Imajo M, Nishida E, Huelsken J. HOXA5 counteracts stem cell traits by inhibiting Wnt signaling in colorectal cancer. Cancer Cell. 2015;28:815–29.

    Article  CAS  PubMed  Google Scholar 

  43. Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR, et al. Myc deletion rescues Apc deficiency in the small intestine. Nature. 2007;446:676–9.

    Article  CAS  PubMed  Google Scholar 

  44. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu D, Fang W, Han A, Gallagher L, Davis RJ, Xiong B, et al. c-Jun N-terminal kinase 1 interacts with and negatively regulates Wnt/β-catenin signaling through GSK3β pathway. Carcinogenesis. 2008;29:2317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bi X, Pohl NM, Qian Z, Yang GR, Gou Y, Guzman G, et al. Decorin-mediated inhibition of colorectal cancer growth and migration is associated with E-cadherin in vitro and in mice. Carcinogenesis. 2012;33:326–30.

    Article  CAS  PubMed  Google Scholar 

  49. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.

    Article  CAS  PubMed  Google Scholar 

  50. Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E. Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res. 2007;67:8671–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Nature Science Foundation of China (grants 81672750 and 91229115 to WY, grant 81502105 to YB), a grant from the Key Laboratory of Higher Education Institutes of Shandong Province, the Nature Science Foundation of Shandong Province (grant 2016ZRB14436 to YG) and Taishan Scholar Program of Shandong Province, China, a grant from the Innovation Team of Science and Technology, Henan Province, China, the Startup Fund from Jining Medical University (to YB and YG) and Fostering fund from Jining Medical University (to YG). We would like to thank Prof. Weixing Zhao (Xinxiang Medical University, Xinxiang, China), Prof. Renya Zhang (Jining Medical University, Jining, China) and Prof. Anjia Han (Sun Yat-sen University, Guangzhou, China) for assistance with the histopathology analysis of the mouse models, Prof. Alan Diamond (University of Illinois at Chicago, Chicago, USA) for critical discussion, and Springer Nature Author Services for editing this manuscript. We would also like to thank the Research Histology and Tissue Imaging Core (RHTIC) facility at the University of Illinois at Chicago (Chicago, IL) for their technical assistance.

Author contributions:

Study concept and design: WY, YB; acquisition of data: YB, YG, YY, XW, SZ, YZ, KL, MY, SC; analysis and interpretation of the data: WY, YB, YG; technical and material support: DG, XZ; statistical analysis: YG, WZ; study supervision: WY, YB; drafting of the manuscript: WY; funding: WY, YB, YG, WZ. All authors contributed to critical revision of the manuscript and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wancai Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Guo, Y., Yang, Y. et al. PRSS8 suppresses colorectal carcinogenesis and metastasis. Oncogene 38, 497–517 (2019). https://doi.org/10.1038/s41388-018-0453-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0453-3

This article is cited by

Search

Quick links