Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compatibility of RUNX1/ETO fusion protein modules driving CD34+ human progenitor cell expansion

Abstract

Chromosomal translocations represent frequent events in leukemia. In t(8;21)+ acute myeloid leukemia, RUNX1 is fused to nearly the entire ETO protein, which contains four conserved nervy homology regions, NHR1-4. Furthermore RUNX1/ETO interacts with ETO-homologous proteins via NHR2, thereby multiplying NHR domain contacts. As shown recently, RUNX1/ETO retains oncogenic activity upon either deletion of the NHR3 + 4 N-CoR/SMRT interaction domain or substitution of the NHR2 tetramer domain. Thus, we aimed to clarify the specificities of the NHR domains. A C-terminally NHR3 + 4 truncated RUNX1/ETO containing a heterologous, structurally highly related non-NHR2 tetramer interface translocated into the nucleus and bound to RUNX1 consensus motifs. However, it failed to interact with ETO-homologues, repress RUNX1 targets, and transform progenitors. Surprisingly, transforming capacity was fully restored by C-terminal fusion with ETO’s NHR4 zinc-finger or the repressor domain 3 of N-CoR, while other repression domains failed. With an inducible protein assembly system, we further demonstrated that NHR4 domain activity is critically required early in the establishment of progenitor cultures expressing the NHR2 exchanged truncated RUNX1/ETO. Together, we can show that NHR2 and NHR4 domains can be replaced by heterologous protein domains conferring tetramerization and repressor functions, thus showing that the NHR2 and NHR4 domain structures do not have irreplaceable functions concerning RUNX1/ETO activity for the establishment of human CD34+ cell expansion. We could resemble the function of RUNX1/ETO through modular recomposition with protein domains from RUNX1, ETO, BCR and N-CoR without any NHR2 and NHR4 sequences. As most transcriptional repressor proteins do not comprise tetramerization domains, our results provide a possible explanation as to the reason that RUNX1 is recurrently found translocated to ETO family members, which all contain tetramer together with transcriptional repressor moieties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salomon-Nguyen F, Busson-Le Coniat M, Lafage Pochitaloff M, Mozziconacci J, Berger R, Bernard OA. AML1-MTG16 fusion gene in therapy-related acute leukemia with t(16;21)(q24; q22): two new cases. Leukemia. 2000;14:1704–5.

    Article  CAS  Google Scholar 

  2. Guastadisegni MC, Lonoce A, Impera L, Di Terlizzi F, Fugazza G, Aliano S, et al. CBFA2T2 and C20orf112: two novel fusion partners of RUNX1 in acute myeloid leukemia. Leukemia. 2010;24:1516–9.

    Article  CAS  Google Scholar 

  3. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA. 1998;95:10860–5.

    Article  CAS  Google Scholar 

  4. Davis JN, McGhee L, Meyers S. The ETO (MTG8) gene family. Gene. 2003;303:1–10.

    Article  CAS  Google Scholar 

  5. Lausen J, Cho S, Liu S, Werner MH. The nuclear receptor co-repressor (N-CoR) utilizes repression domains I and III for interaction and co-repression with ETO. J Biol Chem. 2004;279:49281–8.

    Article  CAS  Google Scholar 

  6. Park S, Chen W, Cierpicki T, Tonelli M, Cai X, Speck NA, et al. Structure of the AML1-ETO eTAFH domain-HEB peptide complex and its contribution to AML1-ETO activity. Blood. 2009;113:3558–67.

    Article  CAS  Google Scholar 

  7. Sun XJ, Wang Z, Wang L, Jiang Y, Kost N, Soong TD, et al. A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature. 2013;500:93–7.

    Article  CAS  Google Scholar 

  8. Ahn EY, Yan M, Malakhova OA, Lo MC, Boyapati A, Ommen HB, et al. Disruption of the NHR4 domain structure in AML1-ETO abrogates SON binding and promotes leukemogenesis. Proc Natl Acad Sci USA. 2008;105:17103–8.

    Article  CAS  Google Scholar 

  9. Wang L, Gural A, Sun XJ, Zhao X, Perna F, Huang G, et al. The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science. 2011;333:765–9.

    Article  CAS  Google Scholar 

  10. Kitabayashi I, Ida K, Morohoshi F, Yokoyama A, Mitsuhashi N, Shimizu K, et al. The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol Cell Biol. 1998;18:846–58.

    Article  CAS  Google Scholar 

  11. Lindberg SR, Olsson A, Persson AM, Olsson I. Interactions between the leukaemia-associated ETO homologues of nuclear repressor proteins. Eur J Haematol. 2003;71:439–47.

    Article  CAS  Google Scholar 

  12. Liu Y, Cheney MD, Gaudet JJ, Chruszcz M, Lukasik SM, Sugiyama D, et al. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity. Cancer Cell. 2006;9:249–60.

    Article  Google Scholar 

  13. Wichmann C, Becker Y, Chen-Wichmann L, Vogel V, Vojtkova A, Herglotz J, et al. Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity. Blood. 2010;116:603–13.

    Article  CAS  Google Scholar 

  14. Kwok C, Zeisig BB, Qiu J, Dong S, So CW. Transforming activity of AML1-ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proc Natl Acad Sci USA. 2009;106:2853–8.

    Article  CAS  Google Scholar 

  15. Wichmann C, Quagliano-Lo Coco I, Yildiz O, Chen-Wichmann L, Weber H, Syzonenko T, et al. Activating c-KIT mutations confer oncogenic cooperativity and rescue RUNX1/ETO-induced DNA damage and apoptosis in human primary CD34+hematopoietic progenitors. Leukemia. 2015;29:279–89.

    Article  CAS  Google Scholar 

  16. Link KA, Lin S, Shrestha M, Bowman M, Wunderlich M, Bloomfield CD, et al. Supraphysiologic levels of the AML1-ETO isoform AE9a are essential for transformation. Proc Natl Acad Sci USA. 2016;113:9075–80.

    Article  CAS  Google Scholar 

  17. Yan M, Burel SA, Peterson LF, Kanbe E, Iwasaki H, Boyapati A, et al. Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci USA. 2004;101:17186–91.

    Article  CAS  Google Scholar 

  18. Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y, et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med. 2006;12:945–9.

    Article  CAS  Google Scholar 

  19. DeKelver RC, Yan M, Ahn EY, Shia WJ, Speck NA, Zhang DE. Attenuation of AML1-ETO cellular dysregulation correlates with increased leukemogenic potential. Blood. 2013;121:3714–7.

    Article  CAS  Google Scholar 

  20. Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774–97.

    Article  CAS  Google Scholar 

  21. Zhao X, Ghaffari S, Lodish H, Malashkevich VN, Kim PS. Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat Struct Biol. 2002;9:117–20.

    CAS  PubMed  Google Scholar 

  22. Okumura AJ, Peterson LF, Okumura F, Boyapati A, Zhang DE. t(8;21)(q22; q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood. 2008;112:1392–401.

    Article  CAS  Google Scholar 

  23. Pownall ME, Welm BE, Freeman KW, Spencer DM, Rosen JM, Isaacs HV. An inducible system for the study of FGF signalling in early amphibian development. Dev Biol. 2003;256:89–99.

    Article  CAS  Google Scholar 

  24. Kohrs N, Kolodziej S, Kuvardina ON, Herglotz J, Yillah J, Herkt S, et al. MiR144/451 expression is repressed by RUNX1 during megakaryopoiesis and disturbed by RUNX1/ETO. PLoS Genet. 2016;12:e1005946.

    Article  Google Scholar 

  25. Ponnusamy K, Kohrs N, Ptasinska A, Assi SA, Herold T, Hiddemann W, et al. RUNX1/ETO blocks selectin-mediated adhesion via epigenetic silencing of PSGL-1. Oncogenesis. 2015;4:e146.

    Article  CAS  Google Scholar 

  26. Graef IA, Holsinger LJ, Diver S, Schreiber SL, Crabtree GR. Proximity and orientation underlie signaling by the non-receptor tyrosine kinase ZAP70. EMBO J. 1997;16:5618–28.

    Article  CAS  Google Scholar 

  27. Liu Y, Chen W, Gaudet J, Cheney MD, Roudaia L, Cierpicki T, et al. Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO’s activity. Cancer Cell. 2007;11:483–97.

    Article  CAS  Google Scholar 

  28. Okumura AJ, Peterson LF, Lo MC, Zhang DE. Expression of AML/Runx and ETO/MTG family members during hematopoietic differentiation of embryonic stem cells. Exp Hematol. 2007;35:978–88.

    Article  CAS  Google Scholar 

  29. Lindberg SR, Olsson A, Persson AM, Olsson I. The Leukemia-associated ETO homologues are differently expressed during hematopoietic differentiation. Exp Hematol. 2005;33:189–98.

    Article  CAS  Google Scholar 

  30. Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev. 2000;14:45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mulloy JC, Cammenga J, MacKenzie KL, Berguido FJ, Moore MA, Nimer SD. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood. 2002;99:15–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Simone Schwarz for expert technical assistance and Sandra Moore for critical comments on the manuscript. We are supported by research grants from the José Carreras Leukemia Foundation (DJCLS R 12/28, CW), the Wilhelm Sander-Foundation (2014.162.2, PG & CW) the Friedrich-Baur Foundation (CW) and the Deutsche Forschungsgemeinschaft (DFG LA 1389/6-1, JL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wichmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen-Wichmann, L., Shvartsman, M., Preiss, C. et al. Compatibility of RUNX1/ETO fusion protein modules driving CD34+ human progenitor cell expansion. Oncogene 38, 261–272 (2019). https://doi.org/10.1038/s41388-018-0441-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0441-7

This article is cited by

Search

Quick links