Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of store-operated calcium entry (SOCE) suppresses glioblastoma growth by inhibiting the Hippo pathway transcriptional coactivators YAP/TAZ

Abstract

Glioblastomas (GBM) are the most aggressive brain cancers without effective therapeutics. The Hippo pathway transcriptional coactivators YAP/TAZ were implicated as drivers in GBM progression and could be therapeutic targets. Here we found in an unbiased screen of 1650 compounds that amlodipine is able to inhibit survival of GBM cells by suppressing YAP/TAZ activities. Instead of its known function as an L-type calcium channel blocker, we found that amlodipine is able to activate Ca2+ entry by enhancing store-operated Ca2+ entry (SOCE). Amlodipine as well as approaches that cause store depletion and activate SOCE trigger phosphorylation and activation of Lats1/2, which in turn phosphorylate YAP/TAZ and prevent their accumulation in the cell nucleus. Furthermore, we identified that protein kinase C (PKC) beta II is a major mediator of Ca2+-induced Lats1/2 activation. Ca2+ induces accumulation of PKC beta II in an actin cytoskeletal compartment. Such translocation depends on inverted formin-2 (INF2). Depletion of INF2 disrupts both PKC beta II translocation and Lats1/2 activation. Functionally, we found that elevation of cytosolic Ca2+ or PKC beta II expression inhibits YAP/TAZ-mediated gene transcription. In vivo PKC beta II expression inhibits GBM tumor growth and prolongs mouse survival through inhibition of YAP/TAZ in an orthotopic mouse xenograft model. Our studies indicate that Ca2+ is a crucial intracellular cue that regulates the Hippo pathway and that triggering SOCE could be a strategy to target YAP/TAZ in GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005;109:93–108.

    Article  Google Scholar 

  2. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–73.

    Article  CAS  Google Scholar 

  3. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  CAS  Google Scholar 

  4. Bhat KP, Salazar KL, Balasubramaniyan V, Wani K, Heathcock L, Hollingsworth F, et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev. 2011;25:2594–609.

    Article  CAS  Google Scholar 

  5. Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J Neuropathol Exp Neurol. 2011;70:568–77.

    Article  CAS  Google Scholar 

  6. Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811–28.

    Article  CAS  Google Scholar 

  7. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    Article  CAS  Google Scholar 

  8. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.

    Article  CAS  Google Scholar 

  9. Tian T, Li A, Lu H, Luo R, Zhang M, Li Z. TAZ promotes temozolomide resistance by upregulating MCL-1 in human glioma cells. Biochem Biophys Res Commun. 2015;463:638–43.

    Article  CAS  Google Scholar 

  10. Fernandez LA, Squatrito M, Northcott P, Awan A, Holland EC, Taylor MD, et al. Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene. 2012;31:1923–37.

    Article  Google Scholar 

  11. Kapoor A, Yao W, Ying H, Hua S, Liewen A, Wang Q, et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell. 2014;158:185–97.

    Article  CAS  Google Scholar 

  12. Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F, Wang X, et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell. 2014;158:171–84.

    Article  CAS  Google Scholar 

  13. Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014;13:63–79.

    Article  CAS  Google Scholar 

  14. Monteith GR, Prevarskaya N, Roberts-Thomson SJ. The calcium-cancer signalling nexus. Nat Rev Cancer. 2017;17:367–80.

    Article  CAS  Google Scholar 

  15. Roderick HL, Cook SJ. Ca2+signalling checkpoints in cancer: remodelling Ca2+for cancer cell proliferation and survival. Nat Rev Cancer. 2008;8:361–75.

    Article  CAS  Google Scholar 

  16. Potier M, Trebak M. New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch. 2008;457:405–15.

    Article  CAS  Google Scholar 

  17. Trebak M, Putney JW. ORAI calcium channels. Physiology. 2017;32:332–42.

    Article  CAS  Google Scholar 

  18. Jardin I, Rosado JA. STIM and calcium channel complexes in cancer. Biochim Biophys Acta. 2016;1863:1418–26.

    Article  CAS  Google Scholar 

  19. Li W, Dong S, Wei W, Wang G, Zhang A, Pu P, et al. The role of transcriptional coactivator TAZ in gliomas. Oncotarget. 2016;7:82686–99.

    PubMed  PubMed Central  Google Scholar 

  20. Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol Cell Biol. 2008;28:2426–36.

    Article  CAS  Google Scholar 

  21. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.

    Article  CAS  Google Scholar 

  22. DeHaven WI, Smyth JT, Boyles RR, Bird GS, Putney JW. Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry. J Biol Chem. 2008;283:19265–73.

    Article  CAS  Google Scholar 

  23. Prakriya M, Lewis RS. Potentiation and inhibition of Ca2+release-activated Ca2+channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol. 2001;536:3–19.

    Article  CAS  Google Scholar 

  24. Trebak M, Bird GSJ, McKay RR, Putney JW. Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem. 2002;277:21617–23.

    Article  CAS  Google Scholar 

  25. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M. Stim1 and orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res. 2008;103:1289–99.

    Article  CAS  Google Scholar 

  26. Smyth JT, DeHaven WI, Bird GS, Putney JW. Ca2+-store-dependent and -independent reversal of Stim1 localization and function. J Cell Sci. 2008;121:762–72.

    Article  CAS  Google Scholar 

  27. Morgan AJ, Jacob R. Ionomycin enhances Ca2+influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane. Biochem J. 1994;300(Pt 3):665–72.

    Article  CAS  Google Scholar 

  28. Takemura H, Hughes AR, Thastrup O, Putney JW. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool, and not an inositol phosphate, regulates calcium fluxes at the plasma membrane. J Biol Chem. 1989;264:12266–71.

    CAS  PubMed  Google Scholar 

  29. Motiani RK, Hyzinski-Garcia MC, Zhang X, Henkel MM, Abdullaev IF, Kuo YH, et al. STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastoma invasion. Pflugers Arch. 2013;465:1249–60.

    Article  CAS  Google Scholar 

  30. Asai M, Takeuchi K, Uchida S, Urushida T, Katoh H, Satoh H, et al. Misinterpretation of the effect of amlodipine on cytosolic calcium concentration with fura-2 fluorospectrometry. Naunyn Schmiedebergs Arch Pharmacol. 2008;377:423–7.

    Article  CAS  Google Scholar 

  31. Chan EH, Nousiainen M, Chalamalasetty RB, Schafer A, Nigg EA, Sillje HH. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene. 2005;24:2076–86.

    Article  CAS  Google Scholar 

  32. Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG, Hong AW, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun. 2015;6:8357.

    Article  CAS  Google Scholar 

  33. Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D. Identification of Happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase cascade. Dev Cell. 2015;34:642–55.

    Article  CAS  Google Scholar 

  34. Gong R, Hong AW, Plouffe SW, Zhao B, Liu G, Yu FX, et al. Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell Res. 2015;25:985–8.

    Article  CAS  Google Scholar 

  35. Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, et al. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem. 1993;268:9194–7.

    CAS  PubMed  Google Scholar 

  36. Soh JW, Weinstein IB. Roles of specific isoforms of protein kinase C in the transcriptional control of cyclin D1 and related genes. J Biol Chem. 2003;278:34709–16.

    Article  CAS  Google Scholar 

  37. Blobe GC, Stribling DS, Fabbro D, Stabel S, Hannun YA. Protein kinase C beta II specifically binds to and is activated by F-actin. J Biol Chem. 1996;271:15823–30.

    Article  CAS  Google Scholar 

  38. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012;26:54–68.

    Article  Google Scholar 

  39. Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol. 2012;13:591–600.

    Article  CAS  Google Scholar 

  40. Shao X, Li Q, Mogilner A, Bershadsky AD, Shivashankar GV. Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim. Proc Natl Acad Sci USA. 2015;112:E2595–2601.

    Article  CAS  Google Scholar 

  41. Wales P, Schuberth CE, Aufschnaiter R, Fels J, Garcia-Aguilar I, Janning A, et al. Calcium-mediated actin reset (CaAR) mediates acute cell adaptations. Elife. 2016;5:e19850

    Article  Google Scholar 

  42. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, et al. Lifeact: a versatile marker to visualize F-actin. Nat Methods. 2008;5:605–7.

    Article  CAS  Google Scholar 

  43. Liu H, Hughes JD, Rollins S, Chen B, Perkins E. Calcium entry via ORAI1 regulates glioblastoma cell proliferation and apoptosis. Exp Mol Pathol. 2011;91:753–60.

    Article  CAS  Google Scholar 

  44. Faulkner JK, McGibney D, Chasseaud LF, Perry JL, Taylor IW. The pharmacokinetics of amlodipine in healthy volunteers after single intravenous and oral doses and after 14 repeated oral doses given once daily. Br J Clin Pharmacol. 1986;22:21–25.

    Article  CAS  Google Scholar 

  45. Steinberg SF. Structural basis of protein kinase C isoform function. Physiol Rev. 2008;88:1341–78.

    Article  CAS  Google Scholar 

  46. Sun S, Irvine KD. Cellular organization and cytoskeletal regulation of the Hippo signaling network. Trends Cell Biol. 2016;26:694–704.

    Article  CAS  Google Scholar 

  47. Mana-Capelli S, Paramasivam M, Dutta S, McCollum D. Angiomotins link F-actin architecture to Hippo pathway signaling. Mol Biol Cell. 2014;25:1676–85.

    Article  Google Scholar 

  48. Li W, Cooper J, Zhou L, Yang C, Erdjument-Bromage H, Zagzag D, et al. Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DCAF1)-mediated inhibition of the Hippo pathway kinases Lats1 and 2 in the nucleus. Cancer Cell. 2014;26:48–60.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Thomas Abraham and Wade Edris in the Microscopy Imaging Core Facility, Kang Li in the Molecular and Histopathology Core Facility, and Wesley Raup-Konsavage in the Drug Discovery, Development and Delivery Core Facility of Penn State College of Medicine for technical support and sample analysis. This work was supported by the National Institutes of Health MSTP Grant 5T32GM118294 (to P.P.Y. through PSU), National Institutes of Health Grants R01HL097111 and R01HL123364 (to M.T.), K22 5K22CA190440 (to W.L.), AACR-Aflac, Inc. Career Development Award for Pediatric Cancer Research 14-20-10-LI (to W.L.), and the Four Diamonds Fund for Pediatric Cancer Research (to W.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wei, Y., Zhang, L. et al. Induction of store-operated calcium entry (SOCE) suppresses glioblastoma growth by inhibiting the Hippo pathway transcriptional coactivators YAP/TAZ. Oncogene 38, 120–139 (2019). https://doi.org/10.1038/s41388-018-0425-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0425-7

This article is cited by

Search

Quick links