Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RETRACTED ARTICLE: PTBP3 splicing factor promotes hepatocellular carcinoma by destroying the splicing balance of NEAT1 and pre-miR-612

This article was retracted on 08 March 2023

This article has been updated

Abstract

Nuclear-enriched RNA-binding proteins (RBPs) are mainly involved in transcriptional regulation, which is a critical checkpoint to tune gene diversity and expression levels. We analyzed nuclear RBPs in human HCC tissues and matched normal control tissues. Based on the gene expression levels, PTBP3 was identified as top-ranked in the nuclei of HCC cells. HCC cell lines then were transfected with siRNAs or lentiviral vectors. PTBP3 promoted HCC cell proliferation and metastasis both in vitro and in vivo. RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and qRT-PCR assays verified that PTBP3 protein recruited abundant lnc-NEAT1 splicing variants (NEAT1_1 and NEAT1_2) and pre-miR-612 (precursor of miR-612) in the nucleus. NEAT1_1, NEAT1_2 and miR-612 expression levels were determined by PTBP3. Correlational analyses revealed that PTBP3 was positively correlated with NEAT1, but it was inversely correlated with miR-612 in HCC. The P53/CCND1 and AKT2/EMT pathways were determined by NEAT1 and miR-612 respectively in HCC. The PTBP3high and NEAT1high/miR-612low patients had a shorter overall survival. Therefore, nuclear-enriched RBP, PTBP3, promotes HCC cell malignant growth and metastasis by regulating the balance of splicing variants (NEAT1_1, NEAT1_2 and miR-612) in HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Ye QH, Zhu WW, Zhang JB, Qin Y, Lu M, Lin GL, et al. GOLM1 modulates EGFR/RTK cell-surface recycling to drive hepatocellular carcinoma metastasis. Cancer Cell. 2016;30:444–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Castello A, Fischer B, Frese CK, Horos R, Alleaume AM, Foehr S, et al. Comprehensive identification of RNA-binding domains in human cells. Mol Cell. 2016;63:696–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Peal L, Jambunathan N, Mahalingam R. Phylogenetic and expression analysis of RNA-binding proteins with triple RNA recognition motifs in plants. Mol Cells. 2011;31:55–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee HC, Jung SH, Hwang HJ, Kang D, De S, Dudekula DB, et al. WIG1 is crucial for AGO2-mediated ACOT7 mRNA silencing via miRNA-dependent and –independent mechanisms. Nucleic Acids Res. 2017;45:6894–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Köster T, Marondedze C, Meyer K, Staiger D. RNA-binding proteins revisited – the emerging Arabidopsis mRNA interactome. Trends Plant Sci. 2017;22:512–26.

    Article  PubMed  Google Scholar 

  6. Manley JL, Tacke R. SR proteins and splicing control. Genes Dev. 1996;10:1569–79.

    Article  CAS  PubMed  Google Scholar 

  7. Arslan AD, He X, Wang M, Rumschlag-Booms E, Rong L, Beck WT. A High throughput assay to identify small molecule modulators of alternative pre-mRNA splicing. J Biomol Screen. 2013;18:180–90.

    Article  PubMed  Google Scholar 

  8. Zerbe LK, Pino I, Pio R, Cosper PF, Dwyer-Nield LD, Meyer AM, et al. Relative amounts of antagonistic splicing factors, hnRNP A1 and ASF/SF2, change during neoplastic lung growth: implications for pre-mRNA processing. Mol Carcinog. 2004;41:187–96.

    Article  CAS  PubMed  Google Scholar 

  9. Ji Q, Zhang L, Liu X, Zhou L, Wang W, Han Z, et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer. 2014;111:736–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tan LY, Whitfield P, Llorian M, Monzon-Casanova E, Diaz-Munoz MD, Turner M, et al. Generation of functionally distinct isoforms of PTBP3 by alternative splicing and translation initiation. Nucleic Acids Res. 2015;43:5586–5600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calabretta S, Bielli P, Passacantilli I, Pilozzi E, Fendrich V, Capurso G, et al. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene. 2016;35:2031–9.

    Article  CAS  PubMed  Google Scholar 

  12. He X, Arslan AD, Ho TT, Yuan C, Stampfer MR, Beck WT. Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties. Oncogenesis. 2014;3:e84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheung HC, Hai T, Zhu W, Baggerly KA, Tsavachidis S, Krahe R, et al. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines. Brain. 2009;132:2277–88.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Licatalosi DD, Yano M, Fak JJ, Mele A, Grabinski SE, Zhang C, et al. Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev. 2012;26:1626–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zagore LL, Grabinski SE, Sweet TJ, Hannigan MM, Sramkoski RM, Li Q, et al. RNA binding protein ptbp2 is essential for male germ cell development. Mol Cell Biol. 2015;35:4030–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Q, Zheng S, Han A, Lin CH, Stoilov P, Fu XD. et al. The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. eLife. 2014;3:e01201

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bhartiya D, Scaria V. Genomic variations in non-coding RNAs: structure, function and regulation. Genomics. 2016;107:59–68.

    Article  CAS  PubMed  Google Scholar 

  18. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, et al. An Architectural role for a nuclear non-coding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 2009;33:717–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tao ZH, Wan JL, Zeng LY, Xie L, Sun HC, Qin LX, et al. miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J Exp Med. 2013;210:789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naganuma T, Hirose T. Paraspeckle formation during the biogenesis of long non-coding RNAs. RNA Biol. 2013;10:456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chakravarty D, Sboner A, Nair SS, Giannopoulou E, Li R, Hennig S, et al. The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun. 2014;5:5383.

    Article  CAS  PubMed  Google Scholar 

  23. Idogawa M, Ohashi T, Sasaki Y, Nakase H, Tokino T. Long non-coding RNA NEAT1 is a transcriptional target of p53 and modulates p53-induced transactivation and tumor-suppressor function. Int J Cancer. 2017;140:2785–91.

    Article  CAS  PubMed  Google Scholar 

  24. Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, et al. P53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med. 2016;22:861–8.

    Article  CAS  PubMed  Google Scholar 

  25. Choudhry H, Albukhari A, Morotti M, Haider S, Moralli D, Smythies J, et al. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene. 2015;34:4482–90.

    Article  CAS  PubMed  Google Scholar 

  26. Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K, et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell. 2014;53:393–406.

    Article  CAS  PubMed  Google Scholar 

  27. Shen W, Liang XH, Crooke ST. Phosphorothioate oligonucleotides can displace NEAT1 RNA and form nuclear paraspeckle-like structures. Nucleic Acids Res. 2014;42:8648–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tao ZH, Wan JL, Zeng LY, Xie L, Sun HC, Qin LX, et al. miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J Exp Med. 2013;210:789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119:1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shim JS, Matsui Y, Bhat S, Nacev BA, Xu J, Bhang HE, et al. Effect of nitroxoline on angiogenesis and growth of human bladder cancer. J Natl Cancer Inst. 2010;102:1855–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pang R, Poon RT. Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett. 2006;242:151–67.

    Article  CAS  PubMed  Google Scholar 

  33. Spellman R, Llorian M, Smith CW. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell. 2007;27:420–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang L, Yang Z, Trottier J, Barbier O, Wang L. LncRNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate Shp mRNA decay. Hepatology. 2017;65:604–15.

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Li D, Zhang W, Guo M, Zhan Q. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J. 2012;31:4415–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen M, Zhang J, Manley JL. Turning on a fuel switch of cancer – hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res. 2010;70:8977–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clower CV, Chatterjee D, Wang Z, Cantley LC, Vander Heiden MG, Krainer AR. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci USA. 2010;107:1894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mang Y, Li L1, Ran J, Zhang S, Liu J, Li L, et al. Long noncoding RNA NEAT1 promotes cell proliferation and invasion by regulating hnRNP A2 expression in hepatocellular carcinoma cells. Onco Targets Ther. 2017;10:1003–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fang L, Sun J, Pan Z, Song Y, Zhong L, Zhang Y, et al. Long non-coding RNA NEAT1 promotes hepatocellular carcinoma cell proliferation through the regulation of miR-129-5p-VCP-IκB. Am J Physiol Gastrointest Liver Physiol. 2017;313:G150–G156.

    Article  PubMed  Google Scholar 

  40. Tan HY, Wang N, Takahashi M, Feng Y, Li H, Feng Y. New natural pigment fraction isolated from saw palmetto: potential for adjuvant therapy of hepatocellular carcinoma. Int J Mol Sci. 2016;17:1277.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Kun Liu and Huimin Wang (Department of Hepatobiliary Surgery of Xijing Hospital) for collecting the tissue samples and the follow-up information.

Authors contributions

XY, KD and HL designed the experiments and wrote the paper; SQ, LW, HZ and ZY performed bioinformatics and statistical analyses; JW, KT, ZL, ZZ and BD performed the histopathologic analyses; CX, BM, RS, XL and WL provided expression data and patient sample material. This research was supported by the National Natural Science Foundation of China (No. 81672339) and the Project of Scientific Research of Shaanxi (No. 2011KTCL03-15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haimin Li or Kefeng Dou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

RNA Immunoprecipitation (RIP) sequencing The data were deposited in an appropriate public repository (http://pan.baidu.com/s/1boURcZ1; Security code: cprr). This is a permanent publicly accessible links. If necessary, we will upload these data to the GEO database.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1038/s41388-023-02648-z"

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Qu, S., Wang, L. et al. RETRACTED ARTICLE: PTBP3 splicing factor promotes hepatocellular carcinoma by destroying the splicing balance of NEAT1 and pre-miR-612. Oncogene 37, 6399–6413 (2018). https://doi.org/10.1038/s41388-018-0416-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0416-8

This article is cited by

Search

Quick links