Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription

Abstract

The contribution of long noncoding RNAs (lncRNAs) to pancreatic cancer progression and the regulatory mechanisms of their expression are attractive areas. In the present study, the overexpression of lncRNA-BX111887 (BX111) in pancreatic cancer tissues was detected by microarray and further validated in a cohort of pancreatic cancer tissues. We further demonstrated that knockdown or overexpression of BX111 dramatically repressed or enhanced proliferation and invasion of pancreatic cancer cells. Mechanically, BX111 activated transcription of ZEB1, a key regulator for epithelia-mesenchymal transition (EMT), via recruiting transcriptional factor Y-box protein (YB1) to its promoter region. Moreover, we revealed that BX111 transcription was induced by hypoxia-inducible factor (HIF-1α) in response to hypoxia. In addition, BX111 contributed to the hypoxia-induced EMT of pancreatic cells by regulating expression of ZEB1 and its downstream proteins E-cadherin and MMP2. Coincidence with in vitro results, BX111 depletion effectively inhibited growth and metastasis of xenograft tumor in vivo. The clinical samples of pancreatic cancer further confirmed a positive association between BX111 and ZEB1. Moreover, high BX111 expression was correlated with late TNM stage, lymphatic invasion and distant metastasis, as well as short overall survival time in patients. Taken together, our findings implicate a hypoxia-induced lncRNA contributes to metastasis and progression of pancreatic cancer, and suggest BX111 might be applied as a potential biomarker and therapeutic target for pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jooste V, Dejardin O, Bouvier V, Arveux P, Maynadie M, Launoy G, et al. Pancreatic cancer: wait times from presentation to treatment and survival in a population-based study. Int J Cancer. 2016;139:1073–80.

    Article  CAS  PubMed  Google Scholar 

  2. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu BJ, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467:1114–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467:1109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lau E, Non-coding RNA. Zooming in on lncRNA functions. Nat Rev Genet. 2014;15:574–5.

    Article  CAS  PubMed  Google Scholar 

  5. Muers M. RNA: genome-wide views of long non-coding RNAs. Nat Rev Genet. 2011;12:742–3.

    Article  CAS  PubMed  Google Scholar 

  6. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21:1253–61.

    Article  CAS  PubMed  Google Scholar 

  7. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29:452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim K, Jutooru I, Chadalapaka G, Johnson G, Frank J, Burghardt R, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 2013;32:1616–25.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng Y, Jutooru I, Chadalapaka G, Corton JC, Safe S. The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. Oncotarget. 2015;6:10840–52.

    PubMed  PubMed Central  Google Scholar 

  10. Sun YW, Chen YF, Li J, Huo YM, Liu DJ, Hua R, et al. A novel long non-coding RNA ENST00000480739 suppresses tumour cell invasion by regulating OS-9 and HIF-1|[alpha]| in pancreatic ductal adenocarcinoma. Br J Cancer. 2014;111:2131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li L, Chen H, Gao Y, Wang YW, Zhang GQ, Pan SH, et al. Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Mol Cancer Ther. 2016;15:2232–43.

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Deng SJ, Zhu S, Jin Y, Cui SP, Chen JY, et al. Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway. Oncotarget. 2016;7:6000–14.

    PubMed  PubMed Central  Google Scholar 

  13. Kang S, Lee TA, Ra EA, Lee E, Hj C, Lee S, et al. Differential control of interleukin-6 mRNA levels by cellular distribution of YB-1. PLoS ONE. 2014;9:e112754.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Evdokimova V, Ovchinnikov LP, Sorensen PH. Y-box binding protein 1: providing a new angle on translational regulation. Cell Cycle. 2006;5:1143–7.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou KR, Liu S, Sun WJ, Zheng LL, Zhou H, Yang JH, et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res. 2017;45:D43–D50.

    Article  CAS  PubMed  Google Scholar 

  16. Mccarty G, Loeb DM. Hypoxia-sensitive epigenetic regulation of an antisense-oriented lncRNA controls WT1 expression in myeloid leukemia cells. PLoS ONE. 2015;10:e0119837.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn CO, Heidecke CD, et al. Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut. 2012;61:439–48.

    Article  CAS  PubMed  Google Scholar 

  18. Krebs AM, Mitschke J, Lasierra LM, Schmalhofer O, Boerries M, Busch H, et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol. 2017;19:518–29.

    Article  CAS  PubMed  Google Scholar 

  19. Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL, et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009;69:5820–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan J-h, Yang F, Wang F, Ma J-z, Guo Y-j, Tao Q-f, et al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25:666–81.

    Article  CAS  PubMed  Google Scholar 

  21. Zhan HX, Wang Y, Li C, Xu JW, Zhou B, Zhu JK, et al. LincRNA-ROR promotes invasion, metastasis and tumor growth in pancreatic cancer through activating ZEB1 pathway. Cancer Lett. 2016;374:261–71.

    Article  CAS  PubMed  Google Scholar 

  22. Evdokimova V, Tognon C, Ng T, Sorensen PHB. Reduced proliferation and enhanced migration: two sides of the same coin? Molecular mechanisms of metastatic progression by YB-1. Cell Cycle. 2009;8:2901–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kohno K, Izumi H, Uchiumi T, Ashizuka M, Kuwano M. The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays News Rev Mol Cell Dev Biol. 2003;25:691–8.

    Article  CAS  Google Scholar 

  24. Astanehe A, Finkbeiner MR, Hojabrpour P, To K, Fotovati A, Shadeo A, et al. The transcriptional induction of PIK3CA in tumor cells is dependent on the oncoprotein Y-box binding protein-1. Oncogene. 2009;28:2406–18.

    Article  CAS  PubMed  Google Scholar 

  25. Evdokimova V, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D, et al. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell. 2009;15:402–15.

    Article  CAS  PubMed  Google Scholar 

  26. Hani C, Johannes S, Spyros O, Carme C, Steffen G, Harris AL, et al. Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2. EMBO Rep. 2014;15:70–76.

    Article  Google Scholar 

  27. Wang Y, Liu X, Zhang H, Sun L, Zhou Y, Jin H, et al. Hypoxia-inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting γ-Synuclein 1 2. Neoplasia. 2014;16:1094–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gómezmaldonado L, Tiana M, Roche O, Pradocabrero A, Jensen L, Fernandezbarral A, et al. EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene. 2015;34:2609–20.

    Article  Google Scholar 

  29. Xu X, Tan X, Tampe B, Sanchez E, Zeisberg M, Zeisberg EM. Snail is a direct target of hypoxia-inducible factor 1α (HIF1α) in hypoxia-induced endothelial to mesenchymal transition of human coronary endothelial cells. J Biol Chem. 2015;290:16653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, et al. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1α in hepatocellular carcinoma. BMC Cancer. 2013;13:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu Y, Tan J, Xie H, Wang J, Meng X, Wang R. HIF-1α regulates EMT via the snail and β-catenin pathways in paraquat poisoning-induced early pulmonary fibrosis. J Cell Mol Med. 2016;20:688–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chou CC, Chuang HC, Salunke SB, Kulp SK, Chen CS. A novel HIF-1α-integrin-linked kinase regulatory loop that facilitates hypoxia-induced HIF-1α expression and epithelial-mesenchymal transition in cancer cells. Oncotarget. 2015;6:8271–85.

    PubMed  PubMed Central  Google Scholar 

  33. Zhang W, Shi X, Peng Y, Wu M, Zhang P, Xie R, et al. HIF-1α promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS ONE. 2015;10:e0129603.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Salnikov AV, Liu L, Platen M, Gladkich J, Salnikova O, Ryschich E, et al. Hypoxia induces EMT in low and highly aggressive pancreatic tumor cells but only cells with cancer stem cell characteristics acquire pronounced migratory potential. PLoS ONE. 2012;7:e46391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lei J, Ma J, Ma Q, Li X, Liu H, Xu Q, et al. Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner. Mol Cancer. 2013;12:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.

    Article  CAS  PubMed  Google Scholar 

  37. Deng S, Li X, Niu Y, Zhu S, Jin Y, Deng S, et al. MiR-652 inhibits acidic microenvironment-induced epithelial-mesenchymal transition of pancreatic cancer cells by targeting ZEB1. Oncotarget. 2015;6:39661–75.

    PubMed  PubMed Central  Google Scholar 

  38. Krzywinski M, Altman N. Points of significance: power and sample size. Nat Methods. 2013;10:1139–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported from the National Science Foundation Committee (NSFC) of China (Grant number: 81372666 and 81672406 to Gang Zhao; No. 81502076 to Shi-chang Deng)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Sj., Chen, Hy., Ye, Z. et al. Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription. Oncogene 37, 5811–5828 (2018). https://doi.org/10.1038/s41388-018-0382-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0382-1

This article is cited by

Search

Quick links