Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting PRPK and TOPK for skin cancer prevention and therapy

Abstract

Solar ultraviolet (sUV) irradiation is a major environmental carcinogen that can cause inflammation and skin cancer. The costs and morbidity associated with skin cancer are increasing, and therefore identifying molecules that can help prevent skin carcinogenesis is important. In this study, we identified the p53-related protein kinase (PRPK) as a novel oncogenic protein that is phosphorylated by the T-LAK cell-originated protein kinase (TOPK). Knockdown of TOPK inhibited PRPK phosphorylation and conferred resistance to solar-simulated light (SSL)-induced skin carcinogenesis in mouse models. In the clinic, acute SSL irradiation significantly increased epidermal thickness as well as total protein and phosphorylation levels of TOPK and PRPK in human skin tissues. We identified two PRPK inhibitors, FDA-approved rocuronium bromide (ZemuronĀ®) or betamethasone 17-valerate (BetadermĀ®) that could attenuate TOPK-dependent PRPK signaling. Importantly, topical application of either rocuronium bromide or betamethasone decreased SSL-induced epidermal hyperplasia, neovascularization, and cutaneous squamous cell carcinoma (cSCC) development in SKH1 (Crl: SKH1-Hrhr) hairless mice by inhibiting PRPK activation, and also reduced expression of the proliferation and oncogenesis markers, COX-2, cyclin D1, and MMP-9. This study is the first to demonstrate that targeting PRPK could be useful against sUV-induced cSCC development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thompson AK, Kelley BF, Prokop LJ, Murad MH, Baum CL. Risk factors for cutaneous squamous cell carcinoma recurrence, metastasis, and disease-specific death: a systematic review and meta-analysis. JAMA Dermatol. 2016;152:419ā€“28.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Guy GP Jr, Machlin SR, Ekwueme DU, Yabroff KR. Prevalence and costs of skin cancer treatment in the U.S., 2002ā€“26 and 2007-2011. Am J Prev Med. 2015;48:183ā€“7.

    ArticleĀ  Google ScholarĀ 

  3. Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol. 2015;151:1081ā€“6.

    ArticleĀ  Google ScholarĀ 

  4. Brantsch KD, Meisner C, Schonfisch B, Trilling B, Wehner-Caroli J, Rocken M, et al. Analysis of risk factors determining prognosis of cutaneous squamous-cell carcinoma: a prospective study. Lancet Oncol. 2008;9:713ā€“20.

    ArticleĀ  Google ScholarĀ 

  5. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277ā€“300.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  6. Farasat S, Yu SS, Neel VA, Nehal KS, Lardaro T, Mihm MC, et al. A new American Joint Committee on Cancer staging system for cutaneous squamous cell carcinoma: creation and rationale for inclusion of tumor (T) characteristics. J Am Acad Dermatol. 2011;64:1051ā€“9.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Marcil I, Stern RS. Risk of developing a subsequent nonmelanoma skin cancer in patients with a history of nonmelanoma skin cancer: a critical review of the literature and meta-analysis. Arch Dermatol. 2000;136:1524ā€“30.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JT. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Investig. 2012;122:464ā€“72.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Fidler IJ. The pathogenesis of cancer metastasis: the ā€˜seed and soilā€™ hypothesis revisited. Nat Rev Cancer. 2003;3:453ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Muller-Decker K. Cyclooxygenase-dependent signaling is causally linked to non-melanoma skin carcinogenesis: pharmacological, genetic, and clinical evidence. Cancer Metastasis Rev. 2011;30:343ā€“61.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Trifan OC, Hla T. Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J Cell Mol Med. 2003;7:207ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Shen Y, Xu J, Jin J, Tang H, Liang J. Cyclin D1 expression in Bowenā€™s disease and cutaneous squamous cell carcinoma. Mol Clin Oncol. 2014;2:545ā€“8.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Huang K, Huang C, Shan K, Chen J, Li H. Significance of PC cell-derived growth factor and cyclin D1 expression in cutaneous squamous cell carcinoma. Clin Exp Dermatol. 2012;37:411ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Panelos J, Tarantini F, Paglierani M, Di Serio C, Maio V, Pellerito S, et al. Photoexposition discriminates Notch 1 expression in human cutaneous squamous cell carcinoma. Mod Pathol. 2008;21:316ā€“25.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Zhu F, Zykova TA, Kang BS, Wang Z, Ebeling MC, Abe Y, et al. Bidirectional signals transduced by TOPK-ERK interaction increase tumorigenesis of HCT116 colorectal cancer cells. Gastroenterology. 2007;133:219ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Oh SM, Zhu F, Cho YY, Lee KW, Kang BS, Kim HG, et al. T-lymphokine-activated killer cell-originated protein kinase functions as a positive regulator of c-Jun-NH2-kinase 1 signaling and H-Ras-induced cell transformation. Cancer Res. 2007;67:5186ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Chang CF, Chen SL, Sung WW, Hsieh MJ, Hsu HT, Chen LH, et al. PBK/TOPK expression predicts prognosis in oral cancer. Int J Mol Sci. 2016;17:1007.

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Joel M, Mughal AA, Grieg Z, Murrell W, Palmero S, Mikkelsen B, et al. Targeting PBK/TOPK decreases growth and survival of glioma initiating cells in vitro and attenuates tumor growth in vivo. Mol Cancer. 2015;14:121.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Abe Y, Matsumoto S, Wei S, Nezu K, Miyoshi A, Kito K, et al. Cloning and characterization of a p53-related protein kinase expressed in interleukin-2-activated cytotoxic T-cells, epithelial tumor cell lines, and the testes. J Biol Chem. 2001;276:44003ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Abe Y, Takeuchi T, Imai Y, Murase R, Kamei Y, Fujibuchi T, et al. A small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK. Biochem Biophys Res Commun. 2006;344:377ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Peterson D, Lee J, Lei XC, Forrest WF, Davis DP, Jackson PK, et al. A chemosensitization screen identifies TP53RK, a kinase that restrains apoptosis after mitotic stress. Cancer Res. 2010;70:6325ā€“35.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Facchin S, Ruzzene M, Peggion C, Sartori G, Carignani G, Marin O, et al. Phosphorylation and activation of the atypical kinase p53-related protein kinase (PRPK) by Akt/PKB. Cell Mol Life Sci. 2007;64:2680ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Shih MC, Chen JY, Wu YC, Jan YH, Yang BM, Lu PJ, et al. TOPK/PBK promotes cell migration via modulation of the PI3K/PTEN/AKT pathway and is associated with poor prognosis in lung cancer. Oncogene. 2012;31:2389ā€“400.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Bode AM, Dong Z. Molecular and cellular targets. Mol Carcinog. 2006;45:422ā€“30.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Runger TM. How different wavelengths of the ultraviolet spectrum contribute to skin carcinogenesis: the role of cellular damage responses. J Invest Dermatol. 2007;127:2103ā€“5.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Ridley AJ, Whiteside JR, McMillan TJ, Allinson SL. Cellular and sub-cellular responses to UVA in relation to carcinogenesis. Int J Radiat Biol. 2009;85:177ā€“95.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Lohmann CM, Solomon AR. Clinicopathologic variants of cutaneous squamous cell carcinoma. Adv Anat Pathol. 2001;8:27ā€“36.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Cherpelis BS, Marcusen C, Lang PG. Prognostic factors for metastasis in squamous cell carcinoma of the skin. Dermatol Surg. 2002;28:268ā€“73.

    PubMedĀ  Google ScholarĀ 

  29. Yano K, Kajiya K, Ishiwata M, Hong YK, Miyakawa T, Detmar M. Ultraviolet B-induced skin angiogenesis is associated with a switch in the balance of vascular endothelial growth factor and thrombospondin-1 expression. J Invest Dermatol. 2004;122:201ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Burton KA, Ashack KA, Khachemoune A. Cutaneous squamous cell carcinoma: a review of high-risk and metastatic disease. Am J Clin Dermatol. 2016;17:491ā€“508.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  31. Yokogawa M, Takaishi M, Nakajima K, Kamijima R, Digiovanni J, Sano S. Imiquimod attenuates the growth of UVB-induced SCC in mice through Th1/Th17 cells. Mol Carcinog. 2013;52:760ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. Allanson M, Reeve VE. Carbon monoxide signalling reduces photocarcinogenesis in the hairless mouse. Cancer Immunol Immunother. 2007;56:1807ā€“15.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Katiyar SK. Interleukin-12 and photocarcinogenesis. Toxicol Appl Pharmacol. 2007;224:220ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Schwarz A, Maeda A, Kernebeck K, van Steeg H, Beissert S, Schwarz T. Prevention of UV radiation-induced immunosuppression by IL-12 is dependent on DNA repair. J Exp Med. 2005;201:173ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Katiyar SK. Proanthocyanidins from grape seeds inhibit UV-radiation-induced immune suppression in mice: detection and analysis of molecular and cellular targets. Photochem Photobiol. 2015;91:156ā€“62.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, Leroy B, et al. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc Natl Acad Sci USA. 2012;109:9551ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Loyo M, Li RJ, Bettegowda C, Pickering CR, Frederick MJ, Myers JN, et al. Lessons learned from next-generation sequencing in head and neck cancer. Head Neck. 2013;35:454ā€“63.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. Missero C, Antonini D. Crosstalk among p53 family members in cutaneous carcinoma. Exp Dermatol. 2014;2:143ā€“6.

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Matsuo Y, Park JH, Miyamoto T, Yamamoto S, Hisada S, Alachkar H, et al. TOPK inhibitor induces complete tumor regression in xenograft models of human cancer through inhibition of cytokinesis. Sci Transl Med. 2014;6:259ra145.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Li Y, Yang Z, Li W, Xu S, Wang T, Niu M, et al. TOPK promotes lung cancer resistance to EGFR tyrosine kinase inhibitors by phosphorylating and activating c. Jun. Oncotarget. 2016;7:6748ā€“64.

    PubMedĀ  Google ScholarĀ 

  41. Hensler S, Mueller MM. Inflammation and skin cancer: old pals telling new stories. Cancer J. 2013;19:517ā€“24.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Park JH, Jeong YJ, Won HK, Choi SY, Oh SM. Activation of TOPK by lipopolysaccharide promotes induction of inducible nitric oxide synthase through NF-kappaB activity in leukemia cells. Cell Signal. 2014;26:849ā€“56.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Fan X, Duan Q, Ke C, Zhang G, Xiao J, Wu D, et al. Cefradine blocks solar-ultraviolet induced skin inflammation through direct inhibition of T-LAK cell-originated protein kinase. Oncotarget. 2016;7:24633ā€“45.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Gao G, Zhang T, Wang Q, Reddy K, Chen H, Yao K, et al. ADA-07 suppresses solar ultraviolet-induced skin carcinogenesis by directly inhibiting TOPK. Mol Cancer Ther. 2017;16:1843ā€“54.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Saraceno R, Chiricozzi A, Nistico SP, Tiberti S, Chimenti S. An occlusive dressing containing betamethasone valerate 0.1% for the treatment of prurigo nodularis. J Dermatol Treat. 2010;21:363ā€“6.

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. Jensen JM, Scherer A, Wanke C, Brautigam M, Bongiovanni S, Letzkus M, et al. Gene expression is differently affected by pimecrolimus and betamethasone in lesional skin of atopic dermatitis. Allergy. 2012;67:413ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Dobrev H. Evaluation of the inhibitory activity of topical indomethacin, betamethasone valerate and emollients on UVL-induced inflammation by means of non-invasive measurements of the skin elasticity. Photodermatol Photoimmunol Photomed. 2001;17:184ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Atzmony L, Reiter O, Hodak E, Gdalevich M, Mimouni D. Treatments for cutaneous lichen planus: a systematic review and meta-analysis. Am J Clin Dermatol. 2016;17:11ā€“22.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  49. Nakagawa K, Taya Y, Tamai K, Yamaizumi M. Requirement of ATM in phosphorylation of the human p53 protein at serine 15 following DNA double-strand breaks. Mol Cell Biol. 1999;19:2828ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Girardini JE, Napoli M, Piazza S, Rustighi A, Marotta C, Radaelli E, et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell. 2011;20:79ā€“91.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Boyle JO, Hakim J, Koch W, van der Riet P, Hruban RH, Roa RA, et al. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res. 1993;53:4477ā€“80.

    CASĀ  PubMedĀ  Google ScholarĀ 

  52. Kwon JY, Lee KW, Kim JE, Jung SK, Kang NJ, Hwang MK, et al. Delphinidin suppresses ultraviolet B-induced cyclooxygenases-2 expression through inhibition of MAPKK4 and PI-3 kinase. Carcinogenesis. 2009;30:1932ā€“40.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Kim JE, Kim JH, Lee Y, Yang H, Heo YS, Bode AM, et al. Bakuchiol suppresses proliferation of skin cancer cells by directly targeting Hck, Blk, and p38 MAP kinase. Oncotarget. 2016;7:14616ā€“27.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Kim JE, Roh E, Lee MH, Yu DH, Kim DJ, Lim TG, et al. Fyn is a redox sensor involved in solar ultraviolet light-induced signal transduction in skin carcinogenesis. Oncogene. 2016;35:4091ā€“101.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was supported by The Hormel Foundation and National of Institutes of Health grants CA027502, CA166011, CA187027, and CA196639 (ZD). We thank Dr. Lorenzo A. Pinna (Universita di Padova, Italy) for the pQE-81L-PRPK plasmid, Alyssa Langfald for confocal microscopy analysis, and Dr. Tia Rai and Nicki Brickman for assistance with manuscript submission.

Author contributions

ER and ZD designed the research. ER performed experiments and analyzed results. ER and AMB wrote the manuscript. ER and MHL performed animal studies. TAZ, HGK, KB, FZ, and YYC assisted in performing experiments. JN and YL performed computer modeling. AMB, CC, JE, and SED organized and supplied human patient tissues from University of Arizona Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zigang Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Eunmiri Roh, Mee-Hyun Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, E., Lee, MH., Zykova, T.A. et al. Targeting PRPK and TOPK for skin cancer prevention and therapy. Oncogene 37, 5633ā€“5647 (2018). https://doi.org/10.1038/s41388-018-0350-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0350-9

This article is cited by

Search

Quick links