Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Pentose conversions support the tumorigenesis of pancreatic cancer distant metastases

Abstract

Pancreatic ductal adenocarcinoma (PDAC) adopts several unique metabolic strategies to support primary tumor growth. Whether additional metabolic strategies are adopted to support metastatic tumorigenesis is less clear. This could be particularly relevant for distant metastasis, which often follows a rapidly progressive clinical course. Here we report that PDAC distant metastases evolve a unique series of metabolic reactions to maintain activation of the anabolic glucose enzyme phosphogluconate dehydrogenase (PGD). PGD catalytic activity was recurrently elevated across distant metastases, and modulating PGD activity levels dictated tumorigenic capacity. Metabolomics data raised the possibility that distant metastases evolved a core pentose conversion pathway (PCP) that converted glucose-derived metabolites into PGD substrate, thereby hyperactivating the enzyme. Consistent with this, each individual metabolite in the PCP stimulated PGD catalysis in distant metastases, and knockdown of each individual PCP enzyme selectively impaired tumorigenesis. We propose that the PCP manufactures PGD substrate outside of the rate-limiting oxidative pentose phosphate pathway (oxPPP). This enables PGD-dependent tumorigenesis by providing adequate substrate to fuel high catalytic activity, and raises the possibility that PDAC distant metastases adopt their own unique metabolic strategies to support tumor growth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.

    Article  CAS  PubMed  Google Scholar 

  2. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371:1039–49.

    Article  CAS  PubMed  Google Scholar 

  3. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Makohon-Moore A, Iacobuzio-Donahue CA. Pancreatic cancer biology and genetics from an evolutionary perspective. Nat Rev Cancer. 2016;16:553–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yachida S, White CM, Naito Y, Zhong Y, Brosnan JA, Macgregor-Das AM, et al. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin Cancer Res. 2012;18:6339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Embuscado EE, Laheru D, Ricci F, Yun KJ, de Boom Witzel S, Seigel A, et al. Immortalizing the complexity of cancer metastasis: genetic features of lethal metastatic pancreatic cancer obtained from rapid autopsy. Cancer Biol Ther. 2005;4:548–54.

    Article  CAS  PubMed  Google Scholar 

  7. Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, Henderson CM, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol. 2009;27:1806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vanharanta S, Massague J. Origins of metastatic traits. Cancer Cell. 2013;24:410–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haeno H, Gonen M, Davis MB, Herman JM, Iacobuzio-Donahue CA, Michor F. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell. 2012;148:362–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148:349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467:1114–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McDonald OG, Li X, Saunders T, Tryggvadottir R, Mentch SJ, Warmoes MO, et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet. 2017;49:367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carter H, Samayoa J, Hruban RH, Karchin R. Prioritization of driver mutations in pancreatic cancer using cancer-specific high-throughput annotation of somatic mutations (CHASM). Cancer Biol Ther. 2010;10:582–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Makohon-Moore AP, Zhang M, Reiter JG, Bozic I, Allen B, Kundu D, et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet. 2017;49:358–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murphy SJ, Hart SN, Lima JF, Kipp BR, Klebig M, Winters JL, et al. Genetic alterations associated with progression from pancreatic intraepithelial neoplasia to invasive pancreatic tumor. Gastroenterology. 2013;145:1098–109.

    Article  CAS  PubMed  Google Scholar 

  17. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467:1109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murphy SJ, Hart SN, Halling GC, Johnson SH, Smadbeck JB, Drucker T, et al. Integrated genomic analysis of pancreatic ductal adenocarcinomas reveals genomic rearrangement events as significant drivers of disease. Cancer Res. 2016;76:749–61.

    Article  CAS  PubMed  Google Scholar 

  20. Notta F, Chan-Seng-Yue M, Lemire M, Li Y, Wilson GW, Connor AA, et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature. 2016;538:378–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B, et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA. 2010;107:246–51.

    Article  CAS  PubMed  Google Scholar 

  22. Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher T, et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature. 2018;554:62–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiu W, Sahin F, Iacobuzio-Donahue CA, Garcia-Carracedo D, Wang WM, Kuo CY, et al. Disruption of p16 and activation of Kras in pancreas increase ductal adenocarcinoma formation and metastasis in vivo. Oncotarget. 2011;2:862–73.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhong Y, Macgregor-Das A, Saunders T, Whittle MC, Makohon-Moore A, Kohutek ZA, et al. Mutant p53 together with TGFbeta signaling influence organ-specific hematogenous colonization patterns of pancreatic cancer. Clin Cancer Res. 2016;23:1607–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bryant KL, Mancias JD, Kimmelman AC, Der CJ. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci. 2014;39:91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497:633–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davidson SM, Jonas O, Keibler MA, Hou HW, Luengo A, Mayers JR, et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat Med. 2016;23:235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Halbrook CJ, Lyssiotis CA. Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell. 2017;31:5–19.

    Article  CAS  PubMed  Google Scholar 

  30. Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP, et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci USA. 2013;110:8882–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 2015;75:544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosenfeldt MT, O’Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature. 2013;504:296–300.

    Article  CAS  PubMed  Google Scholar 

  34. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536:479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25:717–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149:656–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kohler E, Barrach H, Neubert D. Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analogue of NADP. FEBS Lett. 1970;6:225–8.

    Article  CAS  PubMed  Google Scholar 

  39. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324–38.

    Article  CAS  PubMed  Google Scholar 

  40. Cheung WK, Zhao M, Liu Z, Stevens LE, Cao PD, Fang JE, et al. Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis. Cancer Cell. 2013;23:725–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ridky TW, Chow JM, Wong DJ, Khavari PA. Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nat Med. 2010;16:1450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol. 2015;33:661–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dyson JE, D’Orazio RE. 6-Phosphogluconate dehydrogenase from sheep liver: inhibition of the catalytic activity by fructose-1,6-diphosphate. Biochem Biophys Res Commun. 1971;43:183–8.

    Article  CAS  PubMed  Google Scholar 

  44. Hanau S, d’Empaire LP, Capone I, Alberighi S, Montioli R, Dallocchio F. Evidence for dimer/tetramer equilibrium in Trypanosoma brucei 6-phosphogluconate dehydrogenase. Biochim Biophys Acta. 2013;1834:2647–52.

    Article  CAS  PubMed  Google Scholar 

  45. Hitosugi T, Zhou L, Elf S, Fan J, Kang HB, Seo JH, et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell. 2012;22:585–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rippa M, Giovannini PP, Barrett MP, Dallocchio F, Hanau S. 6-Phosphogluconate dehydrogenase: the mechanism of action investigated by a comparison of the enzyme from different species. Biochim Biophys Acta. 1998;1429:83–92.

    Article  CAS  PubMed  Google Scholar 

  47. Shan C, Elf S, Ji Q, Kang HB, Zhou L, Hitosugi T, et al. Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol Cell. 2014;55:552–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh A, Happel C, Manna SK, Acquaah-Mensah G, Carrerero J, Kumar S, et al. Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J Clin Invest. 2013;123:2921–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yao P, Sun H, Xu C, Chen T, Zou B, Jiang P, et al. Evidence for a direct crosstalk between malic enzyme and the pentose phosphate pathway via structural interactions. J Biol Chem. 2017;292:17113–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39:347–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Egger S, Chaikuad A, Kavanagh KL, Oppermann U, Nidetzky B. UDP-glucose dehydrogenase: structure and function of a potential drug target. Biochem Soc Trans. 2010;38:1378–85.

    Article  CAS  PubMed  Google Scholar 

  52. Linster CL, Van Schaftingen E. Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J. 2007;274:1–22.

    Article  CAS  PubMed  Google Scholar 

  53. Rohatgi N, Nielsen TK, Bjorn SP, Axelsson I, Paglia G, Voldborg BG, et al. Biochemical characterization of human gluconokinase and the proposed metabolic impact of gluconic acid as determined by constraint-based metabolic network analysis. PLoS One. 2014;9:e98760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the AACR Pancreatic Cancer Action Network Pathway to Leadership grant (OGM), the Vanderbilt GI SPORE (OGM), and the Vanderbilt Digestive Diseases Research Center (OGM).

Author contributions

MEB and OGM performed experiments and cell culture. OGM conceived the work and wrote the manuscript. AEW performed a subset of gene expression analyses. AEW and AVT plotted 3D tumor assay data. JWL and XL performed LC–HRMS, assigned spectra, and edited presentation of the LC–HRMS data. OGM assembled the final figures. All authors agreed to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver G. McDonald.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bechard, M.E., Word, A.E., Tran, A.V. et al. Pentose conversions support the tumorigenesis of pancreatic cancer distant metastases. Oncogene 37, 5248–5256 (2018). https://doi.org/10.1038/s41388-018-0346-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0346-5

This article is cited by

Search

Quick links