Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Artemisitene suppresses tumorigenesis by inducing DNA damage through deregulating c-Myc-topoisomerase pathway

Abstract

Cancer chemotherapeutic agents such as doxorubicin are DNA damage inducers that also kill normal cells, making them highly toxic to cancer patients. To improve the efficacy and safety of chemotherapy, it is important to develop new chemotherapeutic agents that selectively kill cancer cells. Here we demonstrate that artemisitene (ATT), a natural derivative of the antimalarial drug artemisinin, selectively induces DNA double-stranded breaks (DSBs) and apoptosis in various human cancer cells by suppressing the expression of topoisomerases in human cancer cells. ATT effectively kills human cancer cells without apparent cytotoxicity on normal human cells or mouse liver and kidney. We discovered that c-Myc induces the expression of topoisomerases to prevent accumulation of DNA damage in human cancer cells. ATT selectively destabilizes c-Myc in human cancer cells by promoting the ubiquitination of c-Myc through the specific induction of the c-Myc E3 ligase NEDD4. Therefore, ATT represents a promising new chemotherapeutic drug candidate that can eliminate human cancer cells with minimized cytotoxic effects on normal cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA A Cancer J Clin. 2016;66:115–32.

    Article  Google Scholar 

  2. Bhandari A, Woodhouse M, Gupta S. Colorectal cancer is a leading cause of cancer incidence and mortality among adults younger than 50 years in the USA: a SEER-based analysis with comparison to other young-onset cancers. J Invest Med. 2017;65:311–5.

    Article  Google Scholar 

  3. Liu Q, Chen Z, Jiang G, Zhou Y, Yang X, Huang H, et al. Epigenetic down regulation of G protein-coupled estrogen receptor (GPER) functions as a tumor suppressor in colorectal cancer. Mol Cancer. 2017;16:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Singh A, Sweeney MF, Yu M, Burger A, Greninger P, Benes C, et al. TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell. 2012;148:639–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009;9:338–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zhang P, Wang H, Rowe PSN, Hu B, Wang Y. MEPE/OF45 as a new target for sensitizing human tumour cells to DNA damage inducers. Br J Cancer. 2010;102:862–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bollimpelli VS, Dholaniya PS, Kondapi AK. Topoisomerase IIbeta and its role in different biological contexts. Arch Biochem Biophys. 2017;633:78–84.

    Article  PubMed  CAS  Google Scholar 

  8. Cuya SM, Bjornsti MA, van Waardenburg R. DNA topoisomerase-targeting chemotherapeutics: what’s new? Cancer Chemother Pharmacol. 2017;80:1–14.

    Article  PubMed  CAS  Google Scholar 

  9. Rubin EH. DNA topoisomerase expression in tumors--a novel target for chemotherapy. Human Pathol. 2000;31:631–2.

    Article  CAS  Google Scholar 

  10. Jadaun A, Subbarao N, Dixit A. Allosteric inhibition of topoisomerase I by pinostrobin: molecular docking, spectroscopic and topoisomerase I activity studies. J Photochem Photobiol B. 2017;167:299–308.

    Article  PubMed  CAS  Google Scholar 

  11. Cowell IG, Sondka Z, Smith K, Lee KC, Manville CM, Sidorczuk-Lesthuruge M, et al. Model for MLL translocations in therapy-related leukemia involving topoisomerase IIbeta-mediated DNA strand breaks and gene proximity. Proc Natl Acad Sci USA. 2012;109:8989–94.

    Article  PubMed  Google Scholar 

  12. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67:8839–46.

    Article  PubMed  CAS  Google Scholar 

  13. Gilbert DC, Chalmers AJ, El-Khamisy SF. Topoisomerase I inhibition in colorectal cancer: biomarkers and therapeutic targets. Br J Cancer. 2012;106:18–24.

    Article  PubMed  CAS  Google Scholar 

  14. Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem. 1985;260:14873–8.

    PubMed  CAS  Google Scholar 

  15. Kim EJ, Kim SY, Kim SM, Lee M. A novel topoisomerase 2a inhibitor, cryptotanshinone, suppresses the growth of PC3 cells without apparent cytotoxicity. Toxicol Appl Pharmacol. 2017;330:84–92.

    Article  PubMed  CAS  Google Scholar 

  16. Roca J, Ishida R, Berger JM, Andoh T, Wang JC. Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci USA. 1994;91:1781–5.

    Article  PubMed  CAS  Google Scholar 

  17. Damiani RM, Moura DJ, Viau CM, Caceres RA, Henriques JAP, Saffi J. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol. 2016;90:2063–76.

    Article  PubMed  CAS  Google Scholar 

  18. Matsumoto Y, Tamiya T, Nagao S. Resistance to topoisomerase II inhibitors in human glioma cell lines overexpressing multidrug resistant associated protein (MRP) 2. J Med Investig. 2005;52:41–48.

    Article  Google Scholar 

  19. Azarova AM, Lyu YL, Lin CP, Tsai YC, Lau JYN, Wang JC, et al. Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc Natl Acad Sci USA. 2007;104:11014–9.

    Article  PubMed  CAS  Google Scholar 

  20. Ezoe S. Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int J Environ Res Public Health. 2012;9:2444–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jiang J, Yang ES, Jiang G, Nowsheen S, Wang H, Wang T, et al. p53-dependent BRCA1 nuclear export controls cellular susceptibility to DNA damage. Cancer Res. 2011;71:5546–57.

    Article  PubMed  CAS  Google Scholar 

  22. Bandi S, Joseph B, Berishvili E, Singhania R, Wu YM, Cheng K, et al. Perturbations in ataxia telangiectasia mutant signaling pathways after drug-induced acute liver failure and their reversal during rescue of animals by cell therapy. Am J Pathol. 2011;178:161–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Polager S, Ginsberg D. p53 and E2f: partners in life and death. Nat Rev Cancer. 2009;9:738–48.

    Article  PubMed  CAS  Google Scholar 

  24. Singh S, Englander EW. Nuclear depletion of apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) is an indicator of energy disruption in neurons. Free Radic Biol Med. 2012;53:1782–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chumduri C, Gurumurthy RK, Zadora PK, Mi Y, Meyer TF. Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response. Cell Host Microbe. 2013;13:746–58.

    Article  PubMed  CAS  Google Scholar 

  26. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    Article  PubMed  CAS  Google Scholar 

  27. Hsu E. The history of qing hao in the Chinese materia medica. Trans R Soc Trop Med Hyg. 2006;100:505–8.

    Article  PubMed  CAS  Google Scholar 

  28. Li T, Chen H, Wei N, Mei X, Zhang S, Liu DL, et al. Anti-inflammatory and immunomodulatory mechanisms of artemisinin on contact hypersensitivity. Int Immunopharmacol. 2012;12:144–50.

    Article  PubMed  CAS  Google Scholar 

  29. Choi WH. Novel Pharmacological activity of artesunate and artemisinin: their potential as anti-tubercular agents. J Clin Med. 2017;6:1–15.

    Article  CAS  Google Scholar 

  30. Chong CM, Zheng W. Artemisinin protects human retinal pigment epithelial cells from hydrogen peroxide-induced oxidative damage through activation of ERK/CREB signaling. Redox Biol. 2016;9:50–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Slezakova S, Ruda-Kucerova J. Anticancer activity of artemisinin and its derivatives. Anticancer Res. 2017;37:5995–6003.

    PubMed  Google Scholar 

  32. Posner GH, Northrop J, Paik IH, Borstnik K, Dolan P, Kensler TW, et al. New chemical and biological aspects of artemisinin-derived trioxane dimers. Bioorg Med Chem. 2002;10:227–32.

    Article  PubMed  CAS  Google Scholar 

  33. Efferth T, Herrmann F, Tahrani A, Wink M. Cytotoxic activity of secondary metabolites derived from Artemisia annua L. towards cancer cells in comparison to its designated active constituent artemisinin. Phytomedicine. 2011;18:959–69.

    Article  PubMed  CAS  Google Scholar 

  34. Ooko E, Saeed ME, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, et al. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 2015;22:1045–54.

    Article  PubMed  CAS  Google Scholar 

  35. Chen WM, Li SS, Li JW, Zhou W, Wu SH, Xu SM, et al. Artemisitene activates the Nrf2-dependent antioxidant response and protects against bleomycin-induced lung injury. FASEB J. 2016;30:2500–10.

    Article  PubMed  CAS  Google Scholar 

  36. Pommier Y, Leo E, Zhang HL, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17:421–33.

    Article  PubMed  CAS  Google Scholar 

  37. Thomas LR, Tansey WP. Proteolytic control of the oncoprotein transcription factor Myc. Adv Cancer Res. 2011;110:77–106.

    Article  PubMed  CAS  Google Scholar 

  38. Farrell AS, Sears RC. MYC degradation. Cold Spring Harb Perspect Med. 2014;4:1–14.

    Article  CAS  Google Scholar 

  39. King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell. 2013;153:1552–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chen Y, Zhou C, Ji W, Mei Z, Hu B, Zhang W, et al. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth. Nat Commun. 2016;7:11057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hoffman B, Liebermann DA. The proto-oncogene c-myc and apoptosis. Oncogene. 1998;17:3351–7.

    Article  PubMed  Google Scholar 

  42. Kim J, Xu S, Xiong L, Yu L, Fu X, Xu Y. SALL4 promotes glycolysis and chromatin remodeling via modulating HP1α-Glut1 pathway. Oncogene. 2017;36:6472.

    Article  PubMed  CAS  Google Scholar 

  43. Lake BB, Fink J, Klemetsaune L, Fu X, Jeffers JR, Zambetti GP, et al. Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing puma. Stem Cells. 2012;30:888–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Xu S, Chen W, Xie Q, Xu Y. Obacunone activates the Nrf2-dependent antioxidant responses. Protein Cell. 2016;7:684–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Wenjuan Li was supported by a fellowship from Postdoctoral Science Foundation of China (2015M582371). This study was supported by NSFC (nos. 81430032, U1601222, 81502595), Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Guangdong Provincial Key Special Science and Technology Project (2015B020225004), Guangdong NSF Major basic research developmental project, and grants from California Institute for Regenerative Medicine.

Author contributions

J.C., W.L., K.C., K.J., S.X. performed experiments. J.C. and Y.X. designed the study and analyzed the data. Y.X. provided the administrative support. J.C., W.L., K.C., and Y.X. wrote the first draft of the manuscript and all authors participated in the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, W., Cui, K. et al. Artemisitene suppresses tumorigenesis by inducing DNA damage through deregulating c-Myc-topoisomerase pathway. Oncogene 37, 5079–5087 (2018). https://doi.org/10.1038/s41388-018-0331-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0331-z

This article is cited by

Search

Quick links