Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility

Abstract

Tumor self-seeding occurs when circulating malignant cells reinfiltrate the original tumor. The process may breed more aggressive tumor cells, which may contribute to cancer progression. In this study, we observed tumor self-seeding in mouse xenograft models of hepatocellular carcinoma (HCC) for the first time. We confirmed that circulating tumor cell uptake of tumor-derived exosomes, which are increasingly recognized as key instigators of cancer progression by facilitating cell–cell communication, promoted tumor self-seeding by enhancing the invasive and migration capability of recipient HCC cells. Horizontal transfer of exosomal microRNA-25-5p to anoikis-resistant HCC cells significantly enhanced their migratory and invasive abilities, whereas inhibiting microRNA-25-5p alleviated these effects. Our experiments delineate an exosome-based novel pathway employed by functional microRNA from the original tumor cells that can influence the biological fate of circulating tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer. J Int du Cancer. 2015;136:E359–86.

    Article  CAS  Google Scholar 

  2. Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA. 2012;62:394–9.

    PubMed  Google Scholar 

  3. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139:1315–26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastas Rev. 1989;8:98–101.

    CAS  Google Scholar 

  5. Dondossola E, Crippa L, Colombo B, Ferrero E, Corti A. Chromogranin A regulates tumor self-seeding and dissemination. Cancer Res. 2011;72:449–59.

    Article  PubMed  CAS  Google Scholar 

  6. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262:9412–20.

    PubMed  CAS  Google Scholar 

  7. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151:1542–56.

    Article  PubMed  CAS  Google Scholar 

  9. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319:1244–7.

    Article  PubMed  CAS  Google Scholar 

  10. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285:17442–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Ma Q, Liu T, Ke S, Jiang K, Wen Y, et al. Tumor self-seeding by circulating tumor cells in nude mouse models of human osteosarcoma and a preliminary study of its mechanisms. J Cancer Res Clin Oncol. 2013;140:329–40.

    Article  PubMed  CAS  Google Scholar 

  13. Harris DA, Patel SH, Gucek M, Hendrix A, Westbroek W, Taraska JW. Exosomes released from breast cancer carcinomas stimulate cell movement. PloS One. 2015;10:e0117495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Atay S, Banskota S, Crow J, Sethi G, Rink L, Godwin AK. Oncogenic KIT-containing exosomes increase gastrointestinal stromal tumor cell invasion. Proc Natl Acad Sci USA. 2014; 111: 711–16.

  15. Hendrix A, Westbroek W, Bracke M, De Wever O. An ex(o)citing machinery for invasive tumor growth. Cancer Res. 2010;70:9533–7.

    Article  PubMed  CAS  Google Scholar 

  16. Ekstrom EJ, Bergenfelz C, von Bulow V, Serifler F, Carlemalm E, Jonsson G, et al. WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol Cancer. 2014;13:88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mineo M, Garfield SH, Taverna S, Flugy A, De Leo G, Alessandro R, et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis. 2012;15:33–45.

    Article  PubMed  CAS  Google Scholar 

  18. Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol & Cell Proteom: MCP. 2010;9:1085–99.

    Article  CAS  Google Scholar 

  19. Lv MM, Zhu XY, Chen WX, Zhong SL, Hu Q, Ma TF, et al. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumor Biol. 2014;35:10773–9.

    Article  CAS  Google Scholar 

  20. Hedlund M, Nagaeva O, Kargl D, Baranov V, Mincheva-Nilsson L. Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PloS One. 2011;6:e16899.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Janikashvili N, Bonnotte B, Katsanis E, Larmonier N. The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Dev Immunol. 2011;2011:430394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang ZY, Cao L, Li J, Liang XH, Liu YG, Liu H, et al. Acquisition of anoikis resistance reveals a synoikis-like survival style in BEL7402 hepatoma cells. Cancer Lett. 2008;267:106–15.

    Article  PubMed  CAS  Google Scholar 

  23. Izawa I, Nishizawa M, Ohtakara K, Inagaki M. Densin-180 interacts with delta-catenin/neural plakophilin-related armadillo repeat protein at synapses. J Biol Chem. 2002;277:5345–50.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Y, Yeh S, Appleton BA, Held HA, Kausalya PJ, Phua DC, et al. Convergent and divergent ligand specificity among PDZ domains of the LAP and zonula occludens (ZO) families. J Biol Chem. 2006;281:22299–311.

    Article  PubMed  CAS  Google Scholar 

  25. Robison AJ, Bass MA, Jiao Y, MacMillan LB, Carmody LC, Bartlett RK, et al. Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2. J Biol Chem. 2005;280:35329–36.

    Article  PubMed  CAS  Google Scholar 

  26. Heikkila E, Ristola M, Endlich K, Lehtonen S, Lassila M, Havana M, et al. Densin and beta-catenin form a complex and co-localize in cultured podocyte cell junctions. Mol Cell Biochem. 2007;305:9–18.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z. MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep. 2012;27:594–8.

    PubMed  CAS  Google Scholar 

  28. Razumilava N, Bronk SF, Smoot RL, Fingas CD, Werneburg NW, Roberts LR, et al. miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology. 2012;55:465–75.

    Article  PubMed  CAS  Google Scholar 

  29. Li BS, Zuo QF, Zhao YL, Xiao B, Zhuang Y, Mao XH, et al. MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene. 2015;34:2556–65.

    Article  PubMed  CAS  Google Scholar 

  30. Wang C, Wang X, Su Z, Fei H, Liu X, Pan Q. MiR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1. Oncotarget. 2015;6:36231–44.

    PubMed  PubMed Central  Google Scholar 

  31. Zhou H, Rigoutsos I. MiR-103a-3p targets the 5’ UTR of GPRC5A in pancreatic cells. RNA. 2014;20:1431–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14:447–59.

    Article  PubMed  CAS  Google Scholar 

  33. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108:5003–8.

    Article  PubMed  Google Scholar 

  34. Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26:707–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. McKenzie AJ, Hoshino D, Hong NH, Cha DJ, Franklin JL, Coffey RJ, et al. KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep. 2016;15:978–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25:501–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;3:Unit 3 22.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81472212), 973 Program of China (No. 2014CB542101), Key Program of Medical Scientific Research Foundation of Zhejiang Province, China (No.WKJ-ZJ-1410), Key Program of Administration of Traditional Chinese Medicine of Zhejiang Province, China (No.2014ZZ007) and Zhejiang Provincial Program for the Cultivation of High-level Innovative Health talents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Bo Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chen, W., Zhi, X. et al. Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility. Oncogene 37, 4964–4978 (2018). https://doi.org/10.1038/s41388-018-0309-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0309-x

This article is cited by

Search

Quick links