Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis

Abstract

Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1−/− mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1−/− endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1−/− mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8:592–603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. McIntyre A, Harris AL. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Mol Med. 2015;7:368–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kitazume S, Imamaki R, Ogawa K, Taniguchi N. Sweet role of platelet endothelial cell adhesion molecule in understanding angiogenesis. Glycobiology. 2014;24:1260–4.

    Article  PubMed  CAS  Google Scholar 

  5. Reitsma S, Slaaf DW, Vink H, van Zandvoort MAMJ, oude Egbrink MGA. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454:345–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. McEver RP. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. 2002;14:581–6.

    Article  PubMed  CAS  Google Scholar 

  7. Croci DO, Cerliani JP, Pinto NA, Morosi LG, Rabinovich GA. Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment. Glycobiology. 2014;24:1283–90.

    Article  PubMed  CAS  Google Scholar 

  8. Croci DO, Cerliani JP, Dalotto-Moreno T, Mendez-Huergo SP, Mascanfroni ID, Dergan-Dylon S, et al. Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in Anti-VEGF refractory tumors. Cell. 2014;156:744–58.

    Article  PubMed  CAS  Google Scholar 

  9. Xu D, Fuster MM, Lawrence R, Esko JD. Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability. J Biol Chem. 2011;286:737–45.

    Article  PubMed  CAS  Google Scholar 

  10. Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. 2005;5:526–42.

    Article  PubMed  CAS  Google Scholar 

  11. Hanasaki K, Varki A, Stamenkovic I, Bevilacqua MP. Cytokine-induced beta-galactoside alpha-2,6-sialyltransferase in human endothelial cells mediates alpha 2,6-sialylation of adhesion molecules and CD22 ligands. J Biol Chem. 1994;269:10637–43.

    PubMed  CAS  Google Scholar 

  12. Kitazume S, Yoshihisa A, Yamaki T, Oikawa M, Tachida Y, Ogawa K, et al. Soluble amyloid precursor protein 770 is released from inflamed endothelial cells and activated platelets: a novel biomarker for acute coronary syndrome. J Biol Chem. 2012;287:40817–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lee C, Liu A, Miranda-Ribera A, Hyun SW, Lillehoj EP, Cross AS, et al. NEU1 sialidase regulates the sialylation state of CD31 and disrupts CD31-driven capillary-like tube formation in human lung microvascular endothelia. J Biol Chem. 2014;289:9121–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Abe Y, Smith CW, Katkin JP, Thurmon LM, Xu X, Mendoza LH, et al. Endothelial alpha 2,6-linked sialic acid inhibits VCAM-1-dependent adhesion under flow conditions. J Immunol. 1999;163:2867–76.

    PubMed  CAS  Google Scholar 

  15. Mahabeleshwar GH, Feng W, Phillips DR, Byzova TV. Integrin signaling is critical for pathological angiogenesis. J Exp Med. 2006;203:2495–507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005;437:426–31.

    Article  PubMed  CAS  Google Scholar 

  17. Bird IN, Taylor V, Newton JP, Spragg JH, Simmons DL, Salmon M, et al. Homophilic PECAM-1(CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration. J Cell Sci. 1999;112(Pt 12):1989–97.

    PubMed  CAS  Google Scholar 

  18. Gao C, Sun W, Christofidou-Solomidou M, Sawada M, Newman DK, Bergom C, et al. PECAM-1 functions as a specific and potent inhibitor of mitochondrial-dependent apoptosis. Blood. 2003;102:169–79.

    Article  PubMed  CAS  Google Scholar 

  19. Newman PJ, Newman DK. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol. 2003;23:953–64.

    Article  PubMed  CAS  Google Scholar 

  20. Woodfin A, Voisin MB, Nourshargh S. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol. 2007;27:2514–23.

    Article  PubMed  CAS  Google Scholar 

  21. Kitazume S, Imamaki R, Ogawa K, Komi Y, Futakawa S, Kojima S, et al. Alpha2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling. J Biol Chem. 2010;285:6515–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kitazume S, Imamaki R, Kurimoto A, Ogawa K, Kato M, Yamaguchi Y, et al. Interaction of platelet endothelial cell adhesion molecule (PECAM) withalpha2,6-sialylated glycan regulates its cell surface residency and anti-apoptotic role. J Biol Chem. 2014;289:27604–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lertkiatmongkol P, Paddock C, Newman DK, Zhu J, Thomas MJ, Newman PJ. The role of sialylated glycans in human platelet endothelial cell adhesion molecule 1 (PECAM-1)-mediated trans homophilic interactions and endothelial cell barrier function. J Biol Chem. 2016;291:26216–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Paddock C, Zhou D, Lertkiatmongkol P, Newman PJ, Zhu J. Structural basis for PECAM-1 homophilic binding. Blood. 2016;127:1052–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  PubMed  CAS  Google Scholar 

  26. Hennet T, Chui D, Paulson JC, Marth JD. Immune regulation by the ST6Gal sialyltransferase. Proc Natl Acad Sci USA. 1998;95:4504–9.

    Article  PubMed  CAS  Google Scholar 

  27. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–55.

    Article  PubMed  CAS  Google Scholar 

  28. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 1994;371:346–7.

    Article  PubMed  CAS  Google Scholar 

  29. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.

    Article  PubMed  CAS  Google Scholar 

  30. Nakayama M, Nakayama A, van Lessen M, Yamamoto H, Hoffmann S, Drexler HC, et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol. 2013;15:249–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Domingues I, Rino J, Demmers JA, de Lanerolle P, Santos SC. VEGFR2 translocates to the nucleus to regulate its own transcription. PLoS ONE. 2011;6:e25668.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kotani N, Gu J, Isaji T, Udaka K, Taniguchi N, Honke K. Biochemical visualization of cell surface molecular clustering in living cells. Proc Natl Acad Sci USA. 2008;105:7405–9.

    Article  PubMed  Google Scholar 

  33. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13:555–62.

    Article  PubMed  CAS  Google Scholar 

  34. Ungewiss C, Rizvi ZH, Roybal JD, Peng DH, Gold KA, Shin DH, et al. The microRNA-200/Zeb1 axis regulates ECM-dependent beta1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL. Sci Rep. 2016;6:18652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Morello V, Cabodi S, Sigismund S, Camacho-Leal MP, Repetto D, Volante M, et al. beta1 integrin controls EGFR signaling and tumorigenic properties of lung cancer cells. Oncogene. 2011;30:4087–96.

    Article  PubMed  CAS  Google Scholar 

  36. Kleene R, Schachner M. Glycans and neural cell interactions. Nat Rev Neurosci. 2004;5:195–208.

    Article  PubMed  CAS  Google Scholar 

  37. Swindall AF, Bellis SL. Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem. 2011;286:22982–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Schutze S, Tchikov V, Schneider-Brachert W. Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol. 2008;9:655–62.

    Article  PubMed  CAS  Google Scholar 

  39. Sata M, Suhara T, Walsh K. Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol. 2000;20:309–16.

    Article  PubMed  CAS  Google Scholar 

  40. Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol. 2001;155:459–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6:273–86.

    Article  PubMed  CAS  Google Scholar 

  42. Lurje G, Lenz HJ. EGFR signaling and drug discovery. Oncology. 2009;77:400–10.

    Article  PubMed  CAS  Google Scholar 

  43. Markowska AI, Liu FT, Panjwani N. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med. 2010;207:1981–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhuo Y, Chammas R, Bellis SL. Sialylation of beta1 integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. J Biol Chem. 2008;283:22177–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Dennis JW, Nabi IR, Demetriou M. Metabolism, cell surface organization, and disease. Cell. 2009;139:1229–41.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kitazume S, Tachida Y, Kato M, Yamaguchi Y, Honda T, Hashimoto Y, et al. Brain endothelial cells produce amyloid {beta} from amyloid precursor protein 770 and preferentially secrete the O-glycosylated form. J Biol Chem. 2010;285:40097–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

    Article  PubMed  CAS  Google Scholar 

  48. Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. 2016;22:1294–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sugimoto I, Futakawa S, Oka R, Ogawa K, Marth JD, Miyoshi E. et al. β-Galactoside α2,6-Sialyltransferase I Cleavage by BACE1 Enhances the Sialylation of Soluble glycoproteins : A novel regulatory mechanism for a2,6-sialylation. J Biol Chem. 2007;282:34896–903.

    Article  PubMed  CAS  Google Scholar 

  50. Komi Y, Ohno O, Suzuki Y, Shimamura M, Shimokado K, Umezawa K, et al. Inhibition of tumor angiogenesis by targeting endothelial surface ATP synthase with sangivamycin. Jpn J Clin Oncol. 2007;37:867–73.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Systems Glycobiology Research Project and the Strategic Programs for R&D of RIKEN (to N.T.), MEXT/JSPS KAKENHI grant numbers 16K08601 and 25430122 (to S.K.), and a grant from the Mitsubishi Foundation (to S.K.). The authors would like to acknowledge Dr. Jamey D. Marth for providing the St6gal1−/− mice and the RIKEN BSI-Olympus Collaboration Center for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinobu Kitazume.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imamaki, R., Ogawa, K., Kizuka, Y. et al. Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis. Oncogene 37, 4287–4299 (2018). https://doi.org/10.1038/s41388-018-0271-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0271-7

This article is cited by

Search

Quick links