Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GALNT5 uaRNA promotes gastric cancer progression through its interaction with HSP90

Abstract

Recently, long noncoding RNAs (lncRNAs) have been reported to play a pivotal role in the occurrence and progression of cancer because of their unique characteristics and have therefore become an active area of cancer research. The object of this study was to screen lncRNAs that are dysregulated in gastric cancer and to investigate their potential functions. Global expression of lncRNAs in gastric cancer and adjacent normal tissues of patients was profiled using a microarray assay. We identified an lncRNA (GALNT5 uaRNA, UTR-associated RNA) that is derived from the 3′-UTR of GALNT5. This lncRNA was transcribed independently of the coding region of GALNT5 and was determined to be markedly upregulated in human gastric carcinoma relative to their corresponding normal gastric tissues by quantitative RT-PCR (qRT-PCR) analysis of tissues from 122 gastric carcinoma patients. The expression of GALNT5 uaRNA was significantly correlated with the TNM stage and with lymph node metastasis. Further results demonstrated that GALNT5 uaRNA facilitated the proliferation and migration of gastric cancer cells in vitro and promoted tumor growth in a mouse model of human gastric cancer. Our results also indicated that GALNT5 uaRNA might function in gastric cancer by binding with HSP90. Further studies indicated that the 5′-end stem-loop motifs of GALNT5 uaRNA promoted the binding of HSP90 and its client proteins, and thus inhibited ubiquitination of the clients. These results expanded our understanding of GALNT5 uaRNA as a new avenue for therapeutic intervention against gastric cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    Article  Google Scholar 

  3. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell . 2013;152:1298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29:452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao J. The functional role of long non-coding RNAs and epigenetics. Biol Proced Online. 2014;16:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao WJ, Wu HL, He BS, Zhang YS, Zhang ZY. Analysis of long non-coding RNA expression profiles in gastric cancer. World J Gastroenterol. 2013;19:3658–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li H, Yu B, Li J, Su L, Yan M, Zhu Z, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5:2318–29.

    PubMed  PubMed Central  Google Scholar 

  8. Sun M, Nie F, Wang Y, Zhang Z, Hou J, He D, et al. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Res. 2016;76:6299–310.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao L, Guo H, Zhou B, Feng J, Li Y, Han T, et al. Long non-coding RNA SNHG5 suppresses gastric cancer progression by trapping MTA2 in the cytosol. Oncogene. 2016;35:5770–80.

    Article  CAS  PubMed  Google Scholar 

  10. Frith MC, Pheasant M, Mattick JS. The amazing complexity of the human transcriptome. Eur J Hum Genet. 2005;13:894–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mazumder B, Seshadri V, Fox PL. Translational control by the 3’UTR: the ends specify the means. Trends Biochem Sci. 2003;28:91–8.

    Article  CAS  PubMed  Google Scholar 

  12. Mercer TR, Dinger ME, Bracken CP, Kolle G, Szubert JM, Korbie DJ, et al. Regulated posttranscriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Res. 2010;20:1639–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mercer TR, Wilhelm D, Dinger ME, Solda G, Korbie DJ, Glazov EA, et al. Expression of distinct RNAs from 3¢ untranslated regions. Nucleic Acids Res. 2011;39:2393–403.

    Article  CAS  PubMed  Google Scholar 

  14. Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3’ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012;9:563–76.

    Article  CAS  PubMed  Google Scholar 

  15. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004;36:40–5.

    Article  PubMed  Google Scholar 

  16. Rodrigues TC, Fidalgo F, da Costa CM, Ferreira EN, da Cunha IW, Carraro DM, et al. Upregulated genes at 2q24 gains as candidate oncogenes in hepatoblastomas. Future Oncol. 2014;10:2449–57.

    Article  CAS  PubMed  Google Scholar 

  17. Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol. 2015;10:473–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mayer MP, Le Breton L. Hsp90: breaking the symmetry. Mol Cell. 2015;58:8–20.

    Article  CAS  PubMed  Google Scholar 

  19. Khurana N, Bhattacharyya S. Hsp90, the concertmaster: tuning transcription. Front Oncol. 2015;5:100.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tsutsumi S, Neckers L. Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci. 2007;98:1536–9.

    Article  CAS  PubMed  Google Scholar 

  21. Bishop SC, Burlison JA, Blagg BS. Hsp90: a novel target for the disruption of multiple signaling cascades. Curr Cancer Drug Targets. 2007;7:369–88.

    Article  CAS  PubMed  Google Scholar 

  22. Vahid S, Thaper D, Zoubeidi A. Chaperoning the cancer: the proteostatic functions of the heat shock proteins in cancer. Recent Pat Anticancer Drug Discov. 2017;12:35–47.

    Article  CAS  PubMed  Google Scholar 

  23. Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, et al. The role of heat shock proteins in cancer. Cancer Lett. 2015;360:114–8.

    Article  CAS  PubMed  Google Scholar 

  24. Ten Hagen KG, Hagen FK, Balys MM, Beres TM, Van Wuyckhuyse B, Tabak LA. Cloning and expression of a novel, tissue specifically expressed member of the UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase family. J Biol Chem. 1998;273:27749–54.

    Article  PubMed  Google Scholar 

  25. Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type Oglycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 2012;22:736–56.

    Article  CAS  PubMed  Google Scholar 

  26. He H, Shen Z, Zhang H, Wang X, Tang Z, Xu J, et al. Clinical significance of polypeptide Nacetylgalactosaminyl transferase-5 (GalNAc-T5) expression in patients with gastric cancer. Br J Cancer. 2014;110:2021–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuersten S, Goodwin EB. The power of the 3’ UTR: translational control and development. Nat Rev Genet. 2003;4:626–37.

    Article  CAS  PubMed  Google Scholar 

  28. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3’ untranslated regions and fewer microRNA target sites. Science. 2008;320:1643–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mercer TR, Wilhelm D, Dinger ME, Soldà G, Korbie DJ, Glazov EA, et al. Expression of distinct RNAs from 3’ untranslated regions. Nucleic Acids Res. 2011;39:2393–403.

    Article  CAS  PubMed  Google Scholar 

  30. Furuno M, Pan KC, Ninomiya N, Fukuda S, Frith MC, Bult C, et al. Clusters of internally primed transcripts reveal novel long noncoding RNAs. PLoS Genet. 2006;2:e37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell. 2002;9:401–10.

    Article  CAS  PubMed  Google Scholar 

  32. Broemer M, Krappmann D, Scheidereit C. Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. Oncogene. 2004;23:5378–86.

    Article  CAS  PubMed  Google Scholar 

  33. Qing G, Yan P, Xiao G. Hsp90 inhibition results in autophagy-mediated proteasome independent degradation of IkappaB kinase (IKK). Cell Res. 2006;16:895–901.

    Article  CAS  PubMed  Google Scholar 

  34. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem. 2002;277:39858–66.

    Article  CAS  PubMed  Google Scholar 

  35. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013;152:570–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493:231–5.

    Article  CAS  Google Scholar 

  37. Liu X, Li D, Zhang W, Guo M, Zhan Q. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J. 2012;31:4415–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D. The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteom. 2008;7:560–72.

    Article  CAS  Google Scholar 

  39. Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004;6:731–40.

    Article  CAS  PubMed  Google Scholar 

  40. Hamm CA, Costa FF. Epigenomes as therapeutic targets. Pharmacol Ther. 2015;151:72–86.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou CC, Yang F, Yuan SX, Ma JZ, Liu F, Yuan JH, et al. Systemic genome screening identifies the outcome associated focal loss of long noncoding RNA PRAL in hepatocellular carcinoma. Hepatology. 2016;63:850–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the Natural Science Foundation of China (Grant No. 81572755, 81372200 to J. Shi), CAMS Initiative for Innovative Medicine (CAMS-I2M Grant No. 2016-I2M-1-001to J. Shi).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoguo Zhou or Juan Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Zhao, L., Shi, B. et al. GALNT5 uaRNA promotes gastric cancer progression through its interaction with HSP90. Oncogene 37, 4505–4517 (2018). https://doi.org/10.1038/s41388-018-0266-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0266-4

This article is cited by

Search

Quick links