Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collagen IV-conveyed signals can regulate chemokine production and promote liver metastasis

Abstract

Liver metastases remain a major cause of death from gastrointestinal tract cancers as well as from other malignancies such as breast and lung carcinomas and melanoma. Understanding the underlying biology is essential for the design of effective targeted therapies. We previously reported that collagen IV α1/α2 overexpression in non-metastatic lung carcinoma (M27colIV) cells increased their metastatic ability, specifically to the liver and documented high collagen IV levels in surgical resections of liver metastases from diverse tumor types. Here, we aimed to elucidate the functional relevance of collagen IV to metastatic outgrowth in the liver. Gene expression profiling revealed in M27colIVcells significant increases in the expression of chemokines CCL5 (5.7-fold) and CCL7 (2.6-fold) relative to wild-type cells, and this was validated by qPCR and western blotting. Similarly, in human colon carcinoma KM12C and KM12SM cells with divergent liver-colonizing potentials, CCL7 and CCL5 production correlated with type IV collagen expression and the metastatic phenotype. CCL7 silencing by short hairpin RNA (shRNA) reduced experimental liver metastasis in both cell types, whereas CCL5 silencing reduced metastasis of M27colIV cells, implicating these cytokines in metastatic expansion in the liver. Subsequent functional analyses implicated both MEK/ERK and PI3K signaling upstream of CCL7 upregulation and identified CCL7 (but not CCL5) as a critical migration/invasion factor, acting via the chemokine receptor CCR3. Chemokine CCL5 was identified as a regulator of the T-cell immune response in the liver. Loss of CCL7 in KM12SM cells was also associated with altered E-cadherin and reduced vimentin and Snail expression, implicating it in epithelial-to-mesenchymal transition in these cells. Moreover, in clinical specimens of colon cancer liver metastases analyzed by immunohistochemistry, CCL5 and CCL7 levels paralleled those of collagen IV. The results identify the chemokines CCL5 and CCL7 as type IV collagen-regulated genes that promote liver metastasis by distinct and complementary mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98–101.

    CAS  PubMed  Google Scholar 

  2. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  CAS  Google Scholar 

  3. Fidler IJ, Poste G. The “seed and soil” hypothesis revisited. Lancet Oncol. 2008;9:808.

    Article  Google Scholar 

  4. Guan X. Cancer metastases: challenges and opportunities. Acta Pharm Sin B. 2015;5:402–18.

    Article  Google Scholar 

  5. Burnier JV, Wang N, Michel RP, Hassanain M, Li S, Lu Y, et al. Type IV collagen-initiated signals provide survival and growth cues required for liver metastasis. Oncogene. 2011;30:3766–83.

    Article  CAS  Google Scholar 

  6. Akram IG, Georges R, Hielscher T, Adwan H, Berger MR. The chemokines CCR1 and CCRL2 have a role in colorectal cancer liver metastasis. Tumour Biol. 2016;37:2461–71.

    Article  CAS  Google Scholar 

  7. Struyf S, Menten P, Lenaerts JP, Put W, D’Haese A, De Clercq E, et al. Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3 and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur J Immunol. 2001;31:2170–8.

    Article  CAS  Google Scholar 

  8. Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008;267:271–85.

    Article  CAS  Google Scholar 

  9. Chang LY, Lin YC, Mahalingam J, Huang CT, Chen TW, Kang CW, et al. Tumor-derived chemokine CCL5 enhances TGF-beta-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res. 2012;72:1092–102.

    Article  CAS  Google Scholar 

  10. Luo J, Lee SO, Cui Y, Yang R, Li L, Chang C. Infiltrating bone marrow mesenchymal stem cells (BM-MSCs) increase prostate cancer cell invasion via altering the CCL5/HIF2alpha/androgen receptor signals. Oncotarget. 2015;6:27555–65.

    PubMed  PubMed Central  Google Scholar 

  11. Cambien B, Richard-Fiardo P, Karimdjee BF, Martini V, Ferrua B, Pitard B, et al. CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRbeta in colorectal carcinoma. PLoS ONE. 2011;6:e28842.

    Article  CAS  Google Scholar 

  12. Mrowietz U, Schwenk U, Maune S, Bartels J, Kupper M, Fichtner I, et al. The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice. Br J Cancer. 1999;79:1025–31.

    Article  CAS  Google Scholar 

  13. Stormes KA, Lemken CA, Lepre JV, Marinucci MN, Kurt RA. Inhibition of metastasis by inhibition of tumor-derived CCL5. Breast Cancer Res Treat. 2005;89:209–12.

    Article  CAS  Google Scholar 

  14. Lee YS, Kim SY, Song SJ, Hong HK, Lee Y, Oh BY, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget. 2016;7:36842–53.

    PubMed  PubMed Central  Google Scholar 

  15. Jung DW, Che ZM, Kim J, Kim K, Kim KY, Williams D. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int J Cancer. 2010;127:332–44.

    CAS  PubMed  Google Scholar 

  16. Cho YB, Lee WY, Choi SJ, Kim J, Hong HK, Kim SH, et al. CC chemokine ligand 7 expression in liver metastasis of colorectal cancer. Oncol Rep. 2012;28:689–94.

    Article  CAS  Google Scholar 

  17. Hirai H, Fujishita T, Kurimoto K, Miyachi H, Kitano S, Inamoto S, et al. CCR1-mediated accumulation of myeloid cells in the liver microenvironment promoting mouse colon cancer metastasis. Clin Exp Metastasis. 2014;31:977–89.

    Article  CAS  Google Scholar 

  18. Hoyer M, Erichsen R, Gandrup P, Norgaard M, Jacobsen JB. Survival in patients with synchronous liver metastases in central and northern Denmark, 1998 to 2009. Clin Epidemiol. 2011;3(Suppl 1):11–7.

    Article  Google Scholar 

  19. Turdean S, Gurzu S, Turcu M, Voidăzan S, Sin A. Liver Metastases: Incidence and Clinicopathological Data. Acta Med Marisiensis. 2012;58:254–8.

    Google Scholar 

  20. Kitadai Y, Bucana CD, Ellis LM, Anzai H, Tahara E, Fidler IJ. In situ mRNA hybridization technique for analysis of metastasis-related genes in human colon carcinoma cells. Am J Pathol. 1995;147:1238–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang D, Bar-Eli M, Meloche S, Brodt P. Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor: the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals. J Biol Chem. 2004;279:19683–90.

    Article  CAS  Google Scholar 

  22. Zhang D, Brodt P. Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling. Oncogene . 2003;22:974–82.

    Article  CAS  Google Scholar 

  23. Nystrom H, Tavelin B, Bjorklund M, Naredi P, Sund M. Improved tumour marker sensitivity in detecting colorectal liver metastases by combined type IV collagen and CEA measurement. Tumour Biol. 2015;36:9839–47.

    Article  Google Scholar 

  24. Shen X, Yue M, Meng F, Zhu J, Zhu X, Jiang Y. Microarray analysis of differentially-expressed genes and linker genes associated with the molecular mechanism of colorectal cancer. Oncol Lett. 2016;12:3250–8.

    Article  CAS  Google Scholar 

  25. Vellinga TT, den Uil S, Rinkes IH, Marvin D, Ponsioen B, Alvarez-Varela A, et al. Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene. 2016;35:5263–71.

    Article  CAS  Google Scholar 

  26. Yoshimura K, Meckel KF, Laird LS, Chia CY, Park JJ, Olino KL, et al. Integrin alpha2 mediates selective metastasis to the liver. Cancer Res. 2009;69:7320–8.

    Article  CAS  Google Scholar 

  27. Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51.

    Article  CAS  Google Scholar 

  28. Moreno-Layseca P, Streuli CH. Signalling pathways linking integrins with cell cycle progression. Matrix Biol. 2014;34:144–53.

    Article  CAS  Google Scholar 

  29. Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer. 2009;125:2863–70.

    Article  CAS  Google Scholar 

  30. Brunner PM, Glitzner E, Reininger B, Klein I, Stary G, Mildner M, et al. CCL7 contributes to the TNF-alpha-dependent inflammation of lesional psoriatic skin. Exp Dermatol. 2015;24:522–8.

    Article  CAS  Google Scholar 

  31. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011;9:133–48.

    Article  CAS  Google Scholar 

  32. Li S, Pinard M, Wang Y, Yang L, Lin R, Hiscott J, et al. Crosstalk between the TNF and IGF pathways enhances NF-kappaB activation and signaling in cancer cells. Growth Horm IGF Res. 2015;25:253–61.

    Article  CAS  Google Scholar 

  33. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev. 2007;28:20–47.

    Article  CAS  Google Scholar 

  34. Su B, Zhao W, Shi B, Zhang Z, Yu X, Xie F, et al. Let-7d suppresses growth, metastasis, and tumor macrophage infiltration in renal cell carcinoma by targeting COL3A1 and CCL7. Mol Cancer. 2014;13:206.

    Article  Google Scholar 

  35. Brodt P. Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clin Cancer Res. 2016;22:5971–82.

    Article  CAS  Google Scholar 

  36. Goos JA, Coupe VM, van de Wiel MA, Diosdado B, Delis-Van Diemen PM, Hiemstra AC, et al. A prognostic classifier for patients with colorectal cancer liver metastasis, based on AURKA, PTGS2 and MMP9. Oncotarget. 2016;7:2123–34.

    Article  Google Scholar 

  37. Yamada M, Ichikawa Y, Yamagishi S, Momiyama N, Ota M, Fujii S, et al. Amphiregulin is a promising prognostic marker for liver metastases of colorectal cancer. Clin Cancer Res. 2008;14:2351–6.

    Article  CAS  Google Scholar 

  38. Eefsen RL, Van den Eynden GG, Hoyer-Hansen G, Brodt P, Laerum OD, Vermeulen PB, et al. Histopathological growth pattern, proteolysis and angiogenesis in chemonaive patients resected for multiple colorectal liver metastases. J Oncol. 2012;2012:907971.

    Article  Google Scholar 

  39. Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. 2016;22:1294–302.

    Article  CAS  Google Scholar 

  40. Van den Eynden GG, Bird NC, Dirix LY, Eefsen RL, Gao ZH, Hoyer-Hansen G, et al. Tumor stromal phenotypes define VEGF sensitivity--letter. Clin Cancer Res. 2014;20:5140.

    Article  Google Scholar 

  41. Van den Eynden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, Hoyer-Hansen G, et al. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Cancer Res. 2013;73:2031–43.

    Article  Google Scholar 

  42. Proudfoot AE, Bonvin P, Power CA. Targeting chemokines: pathogens can, why can’t we? Cytokine. 2015;74:259–67.

    Article  CAS  Google Scholar 

  43. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42.

    Article  CAS  Google Scholar 

  44. Brodt P, Fallavollita L, Khatib AM, Samani AA, Zhang D. Cooperative regulation of the invasive and metastatic phenotypes by different domains of the type I insulin-like growth factor receptor beta subunit. J Biol Chem. 2001;276:33608–15.

    Article  CAS  Google Scholar 

  45. Morikawa K, Walker SM, Nakajima M, Pathak S, Jessup JM, Fidler IJ. Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res. 1988;48:6863–71.

    CAS  PubMed  Google Scholar 

  46. Samani AA, Chevet E, Fallavollita L, Galipeau J, Brodt P. Loss of tumorigenicity and metastatic potential in carcinoma cells expressing the extracellular domain of the type 1 insulin-like growth factor receptor. Cancer Res. 2004;64:3380–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Julia Burnier for the initial analysis of the microarray data, Ms. Anette Berglund for skillful technical assistance with immunohistochemistry, and the laboratory of Dr. Jean-Jacques Lebrun for help and advice. This work was supported mainly by grants MOP 80201 from the Canadian Institute for Health Research and a PSR-SIIRI-843 grant from the Québec Ministère de l'Économie, de l’Innovation et des Exportations (to P.B.) and also by grants from the Swedish Research Council and Västerbotten County Council (to H.N.). R.F.R. was supported by the Henry R. Shibata fellowship from the Cedars Cancer Institute. R.F.R. and G.V. were supported by MITACS internships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pnina Brodt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaniotis, G., Rayes, R.F., Qi, S. et al. Collagen IV-conveyed signals can regulate chemokine production and promote liver metastasis. Oncogene 37, 3790–3805 (2018). https://doi.org/10.1038/s41388-018-0242-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0242-z

This article is cited by

Search

Quick links