Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zinc finger protein 746 promotes colorectal cancer progression via c-Myc stability mediated by glycogen synthase kinase 3β and F-box and WD repeat domain-containing 7

Abstract

To elucidate the underlying oncogenic mechanism of zinc finger protein 746 (ZNF746), current study was conducted in colorectal cancers (CRCs). Herein, ZNF746 was overexpressed in HCT116, SW620, and SW480 cells, which was supported by CRC tissue microarray and TCGA analysis. Also, DNA microarray revealed the differentially expressed gene profile particularly related to cell cycle genes and c-Myc in ZNF746 depleted HCT116 cells. Furthermore, ZNF746 enhanced the stability of c-Myc via their direct binding through nuclear colocalization by immunoprecipitation and immunofluorescence, while ZNF746 and c-Myc exist mainly in nucleoplasm. Conversely, ZNF746 depletion attenuated phosphorylation of c-Myc (S62) and glycogen synthase kinase 3β (GSK3β) (S9) and also activated p-c-Myc (T58), which was reversed by GSK3 inhibitors such as SB-216763 and Enza. Also, c-Myc degradation by ZNF746 depletion was blocked by knockdown of F-box/WD repeat-containing protein 7 (FBW7) ubiquitin ligase or proteosomal inhibitor MG132. Additionally, the growth of ZNF746 depleted HCT116 cancer cells was retarded with decreased expression of ZNF746 and c-Myc. Overall, these findings suggest that ZNF746 promotes CRC progression via c-Myc stability mediated by GSK3 and FBW7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Center MM, Jemal A, Ward E. International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomark Prev. 2009;18:1688–94.

    Article  Google Scholar 

  2. Bommer GT, Fearon ER. Role of c-Myc in Apc mutant intestinal phenotype: case closed or time for a new beginning? Cancer Cell. 2007;11:391–4.

    Article  PubMed  CAS  Google Scholar 

  3. He TC, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–12.

    Article  PubMed  CAS  Google Scholar 

  4. Roy UK, et al. Wild-type APC regulates caveolin-1 expression in human colon adenocarcinoma cell lines via FOXO1a and C-myc. Mol Carcinog. 2008;47:947–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. van de Wetering M, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111:241–50.

    Article  PubMed  Google Scholar 

  6. Garte SJ. The c-myc oncogene in tumor progression. Crit Rev Oncog. 1993;4:435–49.

    PubMed  CAS  Google Scholar 

  7. Rothberg PG. The role of the oncogene c-myc in sporadic large bowel cancer and familial polyposis coli. Semin Surg Oncol. 1987;3:152–8.

    Article  PubMed  CAS  Google Scholar 

  8. Kelly K, Siebenlist U. The regulation and expression of c-myc in normal and malignant cells. Annu Rev Immunol. 1986;4:317–38.

    Article  PubMed  CAS  Google Scholar 

  9. Morello D, Asselin C, Lavenu A, Marcu KB, Babinet C. Tissue-specific post-transcriptional regulation of c-myc expression in normal and H-2K/human c-myc transgenic mice. Oncogene. 1989;4:955–61.

    PubMed  CAS  Google Scholar 

  10. Nepveu A, Marcu KB, Skoultchi AI, Lachman HM. Contributions of transcriptional and post-transcriptional mechanisms to the regulation of c-myc expression in mouse erythroleukemia cells. Genes Dev. 1987;1:938–45.

    Article  PubMed  CAS  Google Scholar 

  11. Spencer CA, Groudine M. Control of c-myc regulation in normal and neoplastic cells. Adv Cancer Res. 1991;56:1–48.

    Article  PubMed  CAS  Google Scholar 

  12. Gregory MA, Qi Y, Hann SR. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem. 2003;278:51606–12.

    Article  PubMed  CAS  Google Scholar 

  13. McCubrey JA, et al. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget. 2014;5:2881–911.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Farrell AS, et al. Pin1 regulates the dynamics of c-Myc DNA binding to facilitate target gene regulation and oncogenesis. Mol Cell Biol. 2013;33:2930–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Popov N, Schulein C, Jaenicke LA, Eilers M. Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nat Cell Biol. 2010;12:973–81.

    Article  PubMed  CAS  Google Scholar 

  16. Shin JH, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144:689–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Veeriah S, et al. Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet. 2010;42:77–82.

    Article  PubMed  CAS  Google Scholar 

  18. Poulogiannis G, et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci USA. 2010;107:15145–50.

    Article  PubMed  Google Scholar 

  19. Kim B, et al. Inhibition of ZNF746 suppresses invasion and epithelial to mesenchymal transition in H460 non-small cell lung cancer cells. Oncol Rep. 2014;31:73–78.

    Article  PubMed  CAS  Google Scholar 

  20. Karuppagounder SS, et al. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci Rep. 2014;4:4874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chen TC, et al. Nilotinib reduced the viability of human ovarian cancer cells via mitochondria-dependent apoptosis, independent of JNK activation. Toxicol Vitr. 2016;31:1–11.

    Article  CAS  Google Scholar 

  22. Yuge R, et al. mTOR and PDGF pathway blockade inhibits liver metastasis of colorectal cancer by modulating the tumor microenvironment. Am J Pathol. 2015;185:399–408.

    Article  PubMed  CAS  Google Scholar 

  23. Won SH, Lee HJ, Jeong SJ, Lu J, Kim SH. Activation of p53 signaling and inhibition of androgen receptor mediate tanshinone IIA induced G1 arrest in LNCaP prostate cancer cells. Phytother Res PTR. 2012;26:669–74.

    Article  PubMed  CAS  Google Scholar 

  24. Bollag G, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Conrad T, Orom UA. Cellular fractionation and isolation of chromatin-associated RNA. Methods Mol Biol. 2017;1468:1–9.

    Article  PubMed  CAS  Google Scholar 

  26. Gao SP, et al. Loss of TIM50 suppresses proliferation and induces apoptosis in breast cancer. Tumour Biol. 2016;37:1279–87.

    Article  PubMed  CAS  Google Scholar 

  27. Wang X, et al. Recurrent amplification of MYC and TNFRSF11B in 8q24 is associated with poor survival in patients with gastric cancer. Gastric Cancer. 2016;19:116–27.

    Article  PubMed  CAS  Google Scholar 

  28. Aslan JE, et al. Akt and 14-3-3 control a PACS-2 homeostatic switch that integrates membrane traffic with TRAIL-induced apoptosis. Mol Cell. 2009;34:497–509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yada M, et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23:2116–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Geng J, Xia L, Li W, Zhao C, Dou F. Cycloheximide treatment causes a ZVAD-sensitive protease-dependent cleavage of human Tau in drosophila cells. J Alzheimers Dis. 2016;49:1161–8.

    Article  PubMed  CAS  Google Scholar 

  31. Koukourakis GV, Sotiropoulou-Lontou A. Targeted therapy with bevacizumab (Avastin) for metastatic colorectal cancer. Clin Transl Oncol. 2011;13:710–4.

    Article  PubMed  CAS  Google Scholar 

  32. Kumar M, et al. Targeted cancer therapies: the future of cancer treatment. Acta Biomed. 2012;83:220–33.

    PubMed  CAS  Google Scholar 

  33. Ji L, Wei Y, Jiang T, Wang S. Correlation of Nrf2, NQO1, MRP1, cmyc, and p53 in colorectal cancer and their relationships to clinicopathologic features and survival. Int J Clin Exp Pathol. 2014;7:1124–31.

    PubMed  PubMed Central  Google Scholar 

  34. de Mello RA, Marques AM, Araujo A. Epidermal growth factor receptor and metastatic colorectal cancer: insights into target therapies. World J Gastroenterol. 2013;19:6315–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mansi L, Viel E, Curtit E, Medioni J, Le Tourneau C. Targeting the RAS signalling pathway in cancer. Bull Cancer. 2011;98:1019–28.

    PubMed  CAS  Google Scholar 

  36. Schweiger T, et al. EGFR, BRAF and KRAS status in patients undergoing pulmonary metastasectomy from primary colorectal carcinoma: a prospective follow-up study. Ann Surg Oncol. 2014;21:946–54.

    Article  PubMed  Google Scholar 

  37. Chen BJ, Wu YL, Tanaka Y, Zhang W. Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics. Int J Biol Sci. 2014;10:1084–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Huang H, Weng H, Zhou H, Qu L. Attacking c-Myc: targeted and combined therapies for cancer. Curr Pharm Des. 2014;20:6543–54.

    Article  PubMed  CAS  Google Scholar 

  39. Prochownik EV. c-Myc as a therapeutic target in cancer. Expert Rev Anticancer Ther. 2004;4:289–302.

    Article  PubMed  CAS  Google Scholar 

  40. Robson S, Pelengaris S, Khan M. c-Myc and downstream targets in the pathogenesis and treatment of cancer. Recent Pat Anticancer Drug Discov. 2006;1:305–26.

    Article  PubMed  CAS  Google Scholar 

  41. Choi SH, Wright JB, Gerber SA, Cole MD. Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes Dev. 2010;24:1236–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Koch HB, et al. Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach. Cell Cycle. 2007;6:205–17.

    Article  PubMed  CAS  Google Scholar 

  43. Liu PY, et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ. 2013;20:503–14.

    Article  PubMed  CAS  Google Scholar 

  44. Paul I, Ahmed SF, Bhowmik A, Deb S, Ghosh MK. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene. 2013;32:1284–95.

    Article  PubMed  CAS  Google Scholar 

  45. Schwamborn JC, Berezikov E, Knoblich JA. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell. 2009;136:913–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Li M, et al. E3 ubiquitin ligase FBW7alpha inhibits cholangiocarcinoma cell proliferation by downregulating c-Myc and cyclin E. Oncol Rep. 2017;37:1627–36.

    Article  PubMed  CAS  Google Scholar 

  47. Welcker M, Clurman BE. Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div. 2007;2:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant (no. 2017R1A2A1A17069297) and also we appreciate Dr. Han YH in KIRMAS for pcDNA3 reporter, 5′-V5-Myc, HA-FBW7, HA-Myc(S62A), and HA-Myc(T58A) and Dr. Lee ES for c-Myc mutant plasmids used in this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miyong Yun or Sung-Hoon Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J.H., Jung, DB., Kim, H. et al. Zinc finger protein 746 promotes colorectal cancer progression via c-Myc stability mediated by glycogen synthase kinase 3β and F-box and WD repeat domain-containing 7. Oncogene 37, 3715–3728 (2018). https://doi.org/10.1038/s41388-018-0225-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0225-0

This article is cited by

Search

Quick links