Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RSK2 is required for TRAF6 phosphorylation-mediated colon inflammation

Abstract

Inflammation is a complex biological host reaction to tissue damage, infection and trauma. Extensive study of the inflammatory response has led to the identification of several protein kinases that are essential for signaling and could be potential therapeutic targets. The RSK family of kinases has multiple cellular functions. In our study, we found that RSK2 is a mediator for inflammation signaling and interacts with TRAF6. In vitro kinase assay results indicated that RSK2 strongly phosphorylates TRAF6 at serines 46, 47 and 48. Ectopic overexpression of TRAF6 or knocking down RSK2 expression confirmed that RSK2 is a positive regulator of TRAF6 K63 ubiquitination. TRAF6 is also required for RSK2 ubiquitination. TRAF6 bridges the TNF receptor superfamily and intracellular signaling for the induction of proinflammatory cytokines. We developed a colon inflammation model using RSK2 wild type (WT) and knockout (KO) mice. As expected, F4/80 and CD3 infiltration were significantly upregulated in WT mice compared to RSK2 KO mice. Furthermore, inflammation signaling, including Ikkα/β, p38 and JNKs, was dramatically upregulated in WT mice. Colon tissue immunoprecipitation results further confirmed that TRAF6 K63 ubiquitination was lower in RSK2 KO mice. Overall, these results indicate that phosphorylation of TRAF6 (S46, 47, 48) by RSK2 is required for TRAF6 K63 ubiquitination and inflammation signaling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45:27–37.

    Article  CAS  Google Scholar 

  2. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet . 2001;357:539–45.

    Article  CAS  Google Scholar 

  3. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7:211–7.

    Article  CAS  Google Scholar 

  4. Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology . 2010;138:2101–14. e5

    Article  CAS  Google Scholar 

  5. Malakhova M, Tereshko V, Lee SY, Yao K, Cho YY, Bode A, et al. Structural basis for activation of the autoinhibitory C-terminal kinase domain of p90 RSK2. Nat Struct & Mol Biol. 2008;15:112–3.

    Article  CAS  Google Scholar 

  6. Liu K, Cho YY, Yao K, Nadas J, Kim DJ, Cho EJ, et al. Eriodictyol inhibits RSK2-ATF1 signaling and suppresses EGF-induced neoplastic cell transformation. J Biol Chem. 2011;286:2057–66.

    Article  CAS  Google Scholar 

  7. Cho YY, Yao K, Bode AM, Bergen HR 3rd, Madden BJ, Oh SM, et al. RSK2 mediates muscle cell differentiation through regulation of NFAT3. J Biol Chem. 2007;282:8380–92.

    Article  CAS  Google Scholar 

  8. Zhu F, Zykova TA, Peng C, Zhang J, Cho YY, Zheng D, et al. Phosphorylation of H2AX at Ser139 and a new phosphorylation site Ser16 by RSK2 decreases H2AX ubiquitination and inhibits cell transformation. Cancer Res. 2011;71:393–403.

    Article  CAS  Google Scholar 

  9. Cho YY, Yao K, Kim HG, Kang BS, Zheng D, Bode AM, et al. Ribosomal S6 kinase 2 is a key regulator in tumor promoter induced cell transformation. Cancer Res. 2007;67:8104–12.

    Article  CAS  Google Scholar 

  10. Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol. 2008;9:747–58.

    Article  CAS  Google Scholar 

  11. Broom OJ, Widjaya B, Troelsen J, Olsen J, Nielsen OH. Mitogen activated protein kinases: a role in inflammatory bowel disease? Clin Exp Immunol. 2009;158:272–80.

    Article  CAS  Google Scholar 

  12. Wu H, Arron JR. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays 2003;25:1096–105.

    Article  CAS  Google Scholar 

  13. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353–64.

    Article  Google Scholar 

  14. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  Google Scholar 

  15. Zhao W, Wang L, Zhang M, Yuan C, Gao C. E3 ubiquitin ligase tripartite motif 38 negatively regulates TLR-mediated immune responses by proteasomal degradation of TNF receptor-associated factor 6 in macrophages. J Immunol. 2012;188:2567–74.

    Article  CAS  Google Scholar 

  16. Adhikari A, Xu M, Chen ZJ. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene . 2007;26:3214–26.

    Article  CAS  Google Scholar 

  17. Chen ZJ. Ubiquitination in signaling to and activation of IKK. Immunol Rev. 2012;246:95–106.

    Article  Google Scholar 

  18. Huang G, Shi LZ, Chi H. Regulation of JNK and p38 MAPK in the immune system: signal integration, propagation and termination. Cytokine . 2009;48:161–9.

    Article  CAS  Google Scholar 

  19. Lamothe B, Besse A, Campos AD, Webster WK, Wu H, Darnay BG. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. J Biol Chem. 2007;282:4102–12.

    Article  CAS  Google Scholar 

  20. Wertz IE, Dixit VM. Signaling to NF-kappaB: regulation by ubiquitination. Cold Spring Harb Perspect Biol. 2010;2:a003350.

    Article  Google Scholar 

  21. Liu A, Gong P, Hyun SW, Wang KZ, Cates EA, Perkins D, et al. TRAF6 protein couples Toll-like receptor 4 signaling to Src family kinase activation and opening of paracellular pathway in human lung microvascular endothelia. J Biol Chem. 2012;287:16132–45.

    Article  CAS  Google Scholar 

  22. Cho YY, Yao K, Pugliese A, Malakhova ML, Bode AM, Dong Z. A regulatory mechanism for RSK2 NH(2)-terminal kinase activity. Cancer Res. 2009;69:4398–406.

    Article  CAS  Google Scholar 

  23. Zhang X, Zhang J, Zhang L, van Dam H, ten Dijke P. UBE2O negatively regulates TRAF6-mediated NF-kappaB activation by inhibiting TRAF6 polyubiquitination. Cell Res. 2013;23:366–77.

    Article  CAS  Google Scholar 

  24. Jiao S, Zhang Z, Li C, Huang M, Shi Z, Wang Y, et al. The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6. Nat Immunol. 2015;16:246–57.

    Article  CAS  Google Scholar 

  25. Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315:201–5.

    Article  CAS  Google Scholar 

  26. Yin Q, Lin SC, Lamothe B, Lu M, Lo YC, Hura G, et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct & Mol Biol. 2009;16:658–66.

    Article  CAS  Google Scholar 

  27. Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science. 2009;325:1134–8.

    Article  CAS  Google Scholar 

  28. Bekes M, Salvesen GS. The CULt of caspase-8 ubiquitination. Cell. 2009;137:604–6.

    Article  CAS  Google Scholar 

  29. Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S, et al. ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol Cell. 2010;40:75–86.

    Article  CAS  Google Scholar 

  30. Hinz M, Stilmann M, Arslan SC, Khanna KK, Dittmar G, Scheidereit C. A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-kappaB activation. Mol Cell. 2010;40:63–74.

    Article  CAS  Google Scholar 

  31. De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L, et al. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J Carcinog. 2011;10:9.

    Article  Google Scholar 

  32. Lin HH, Faunce DE, Stacey M, Terajewicz A, Nakamura T, Zhang-Hoover J, et al. The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med. 2005;201:1615–25.

    Article  CAS  Google Scholar 

  33. Wang Y, Becker D, Vass T, White J, Marrack P, Kappler JW. A conserved CXXC motif in CD3epsilon is critical for T cell development and TCR signaling. PLoS Biol. 2009;7:e1000253.

    Article  Google Scholar 

  34. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000.

    Article  CAS  Google Scholar 

  35. Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016;26:399–422.

    Article  CAS  Google Scholar 

  36. Kulathu Y, Komander D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol. 2012;13:508–23.

    Article  CAS  Google Scholar 

  37. Zinngrebe J, Montinaro A, Peltzer N, Walczak H. Ubiquitin in the immune system. EMBO Rep. 2014;15:28–45.

    Article  CAS  Google Scholar 

  38. Corn JE, Vucic D. Ubiquitin in inflammation: the right linkage makes all the difference. Nat Struct Mol Biol. 2014;21:297–300.

    Article  CAS  Google Scholar 

  39. Richards SA, Dreisbach VC, Murphy LO, Blenis J. Characterization of regulatory events associated with membrane targeting of p90 ribosomal S6 kinase 1. Mol Cell Biol. 2001;21:7470–80.

    Article  CAS  Google Scholar 

  40. Yang WL, Wu CY, Wu J, Lin HK. Regulation of Akt signaling activation by ubiquitination. Cell Cycle. 2010;9:487–97.

    PubMed  PubMed Central  Google Scholar 

  41. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70:503–33.

    Article  CAS  Google Scholar 

  42. Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 2010;11:9–22.

    Article  CAS  Google Scholar 

  43. Newton AC. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J. 2003;370:361–71.

    Article  CAS  Google Scholar 

  44. Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell. 2007;28:730–8.

    Article  CAS  Google Scholar 

  45. Zhou F, Zhang X, van Dam H, Ten Dijke P, Huang H, Zhang L. Ubiquitin-specific protease 4 mitigates Toll-like/interleukin-1 receptor signaling and regulates innate immune activation. J Biol Chem. 2012;287:11002–10.

    Article  CAS  Google Scholar 

  46. Choo YS, Zhang Z. Detection of protein ubiquitination. J Vis Exp.2009;30:1293

    Google Scholar 

  47. Davidson LA, Callaway ES, Kim E, Weeks BR, Fan YY, Allred CD, et al. Targeted deletion of p53 in Lgr5-expressing intestinal stem cells promotes colon tumorigenesis in a preclinical model of colitis-associated cancer. Cancer Res. 2015;75:5392–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Simin Zhao and Todd Schuster for supporting experiments, Nicki Brickman and Dr. Tia Rai for assistance in submitting our manuscript (The Hormel Institute, University of Minnesota). This work was funded by The Hormel Foundation, National Institutes of Health grants CA166011, CA187027, CA196639 and NSF of Henan Province China No. 162300410337.

Author contributions:

KY, SL, and ZD study conception and research design; KY, SL, DL, HY, CP, JR, TL, HC, GJ, ZZ, YH, and WM performed the research; KY, SL, and DL analysis and interpretation of the data; KY, AMB, and ZD wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zigang Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, K., Lee, SY., Peng, C. et al. RSK2 is required for TRAF6 phosphorylation-mediated colon inflammation. Oncogene 37, 3501–3513 (2018). https://doi.org/10.1038/s41388-018-0167-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0167-6

This article is cited by

Search

Quick links