Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting PFKFB3 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitor

Abstract

Resistance to the BCR-ABL tyrosine kinase inhibitor (TKI) remains a challenge for curing the disease in chronic myeloid leukemia (CML) patients as leukemia cells may survive through BCR-ABL kinase activity-independent signal pathways. To gain insight into BCR-ABL kinase activity-independent mechanisms, we performed an initial bioinformatics screen and followed by a quantitative PCR screen of genes that were elevated in CML samples. A total of 33 candidate genes were identified to be highly expressed in TKIs resistant patients. Among those genes, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), controlling the limiting step of glycolysis, was found to be strongly associated with TKIs resistance. PFKFB3 knockdown or pharmacological inhibition of its kinase activity markedly enhanced the sensitivity of CML cells to TKIs. Furthermore, pharmacological inhibition of PFKFB3 inhibited CML cells growth and significantly prolonged the survival of both allograft and xenograft CML mice. ChIP-seq data analysis combined with subsequent knockdown experiment showed that the Ets transcription factor PU.1 regulated the elevated expression of PFKFB3 in TKIs-resistant CML cells. Therefore, our results showed that targeting PFKFB3 sensitizes CML cells to TKIs and PFKFB3 may be a potential BCR-ABL kinase activity-independent mechanism in CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosti G, Castagnetti F, Gugliotta G, Baccarani M. Tyrosine kinase inhibitors in chronic myeloid leukaemia: which, when, for whom? Nat Rev Clin Oncol. 2016;14:141–54.

    Article  CAS  PubMed  Google Scholar 

  2. Schütz C, Inselmann S, Sausslele S, Dietz C, Mü Ller M, Eigendorff E, et al. Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML. Leukemia. 2017;31:829–36.

    Article  CAS  PubMed  Google Scholar 

  3. Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood . 2017;129:1595–606.

    Article  CAS  PubMed  Google Scholar 

  4. Gotlib J. How I treat atypical chronic myeloid leukemia. Blood. 2017;129:838–45.

    Article  CAS  PubMed  Google Scholar 

  5. Steelman LS, Franklin RA, Abrams SL, Chappell W, Kempf CR, Bäsecke J, et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 2011;25:1080–94.

    Article  CAS  PubMed  Google Scholar 

  6. Bibi S, Arslanhan MD, Langenfeld F, Jeanningros S, Cerny-Reiterer S, Hadzijusufovic E, et al. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy. Haematologica . 2014;99:417–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Quentmeier H, Eberth S, Romani J, Zaborski M, Drexler HG. BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance. J Hematol Oncol. 2011;4:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamada O, Kawauchi K. The role of the JAK-STAT pathway and related signal cascades in telomerase activation during the development of hematologic malignancies. Jak-Stat. 2013;2:e25256.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bar-Natan M, Nelson EA, Xiang M, Frank DA. STAT signaling in the pathogenesis and treatment of myeloid malignancies. Jak-Stat. 2012;1:55–64.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhou H, Mak PY, Mu H, Mak DH, Zeng Z, Cortes J et al. Combined inhibition of β-catenin and Bcr–Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo. Leukemia. 2017. https://doi.org/10.1038/leu.2017.87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cang S, Liu D. P-loop mutations and novel therapeutic approaches for imatinib failures in chronic myeloid leukemia. J Hematol Oncol. 2008;1:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han SH, Kim S-H, Kim H-J, Lee Y, Choi S-Y, Park G, et al. Cobll1 is linked to drug resistance and blastic transformation in chronic myeloid leukemia. Leukemia. 2017;31:1532–9.

    Article  CAS  PubMed  Google Scholar 

  13. Chen Z, Shao C, Wang W, Zuo Z, Mou X, Hu SJ, et al. Cytogenetic landscape and impact in blast phase of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Leukemia. 2017;31:585–92.

    Article  CAS  PubMed  Google Scholar 

  14. Eadie L, Dang P, Saunders V, Yeung D, Osborn M, Grigg A, et al. The clinical significance of ABCB1 overexpression in predicting outcome of CML patients undergoing first-line imatinib treatment. Leukemia. 2016;31:75–82.

    Article  CAS  PubMed  Google Scholar 

  15. Wagle M, Eiring AM, Wongchenko M, Lu S, Guan Y, Wang Y, et al. A role for FOXO1 in BCR–ABL1-independent tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Leukemia. 2016;30:1493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee C-R, Kang J-A, Kim H-E, Choi Y, Yang T, Park S-G. Secretion of IL-1β from imatinib-resistant chronic myeloid leukemia cells contributes to BCR - ABL mutation-independent imatinib resistance. FEBS Lett. 2016;590:358–68.

    Article  CAS  PubMed  Google Scholar 

  17. Okabe S, Tauchi T, Ohyashiki K. Characteristics of dasatinib- and imatinib-resistant chronic myelogenous leukemia cells. Clin Cancer Res. 2008;14:6181–6.

    Article  CAS  PubMed  Google Scholar 

  18. Pene-Dumitrescu T, Smithgall TE. Expression of a Src family kinase in chronic myelogenous leukemia cells induces resistance to imatinib in a kinase-dependent manner. J Biol Chem. 2010;285:21446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sweet K, Zhang L, Pinilla-Ibarz J. Biomarkers for determining the prognosis in chronic myelogenous leukemia. J Hematol Oncol. 2013;6:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, Peng C, Abraham SA, Shan Y, Guo Z, Desouza N, et al. Arachidonate 15-lipoxygenase is required for chronic myeloid leukemia stem cell survival. J Clin Investig. 2014;124:3847–62.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Hu Y, Zhang H, Peng C, Li S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet. 2009;41:783–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Te Kronnie G, Béné MC, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the international microarray innovations in leukemia study group. J Clin Oncol. 2010;28:2529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cantelmo AR, Conradi LC, Brajic A, Goveia J, Kalucka J, Pircher A, et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell. 2016;30:968–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamamoto T, Takano N, Ishiwata K, Ohmura M, Nagahata Y, Matsuura T, et al. Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun. 2014;5:1–16.

    Google Scholar 

  25. Cruys B, Wong BW, Kuchnio A, Verdegem D, Cantelmo AR, Conradi L-C, et al. Glycolytic regulation of cell rearrangement in angiogenesis. Nat Commun. 2016;7:12240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang Z, Goronzy JJ, Weyand CM. The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy. Autophagy. 2014;10:382.

    Article  CAS  PubMed  Google Scholar 

  27. Doménech E, Maestre C, Esteban-Martínez L, Partida D, Pascual R, Fernández-Miranda G, et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol. 2015;17:1304–16.

    Article  CAS  PubMed  Google Scholar 

  28. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–63.

    Article  CAS  PubMed  Google Scholar 

  29. Qian S, Li J, Hong M, Zhu Y, Zhao H, Xie Y, et al. TIGAR cooperated with glycolysis to inhibit the apoptosis of leukemia cells and 3 acute myeloid leukemia. J Hematol Oncol. 2016;9:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oaxaca DM, Yang-Reid SA, Ross JA, Rodriguez G, Staniswalis JG, Kirken RA. Sensitivity of imatinib-resistant T315I BCR-ABL CML to a synergistic combination of ponatinib and forskolin treatment. Tumor Biol. 2016;37:12643–54.

    Article  CAS  Google Scholar 

  31. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174:6477–89.

    Article  CAS  PubMed  Google Scholar 

  32. Ray D, Culine S, Tavitain A, Moreau-Gachelin F. The human homologue of the putative proto-oncogene Spi-1: characterization and expression in tumors. Oncogene. 1990;5:663–8.

    CAS  PubMed  Google Scholar 

  33. Zhang P, Behre G, Pan J, Iwama A, Wara-aswapati N, Radomska HS, et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA. 1999;96:8705–10.

    Article  CAS  PubMed  Google Scholar 

  34. Ganapathy-Kanniappan S, Geschwind, J-FH. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Therapeut. 2008. https://doi.org/10.1158/1535-7163.MCT-07-0482.

    Article  CAS  PubMed  Google Scholar 

  36. Yalcin A, Clem BF, Imbert-Fernandez Y, Ozcan SC, Peker S, O’Neal J, et al. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation ofp27. Cell Death Dis. 2014;5:e1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coller HA. Is cancer a metabolic disease? Am J Pathol. 2014;184:4–17.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Clem BF, O’Neal J, Tapolsky G, Clem AL, Imbert-Fernandez Y, Kerr DA, et al. Targeting 6-Phosphofructo-2-Kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther. 2013;12:1461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149:1269–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodriguez OC, Choudhury S, Kolukula V, Vietsch EE, Catania J, Preet A, et al. Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle. 2012;11:4436–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moon SH, Prives C. Mutant p53 succumbs to starvation. Cell Cycle. 2013;12:867–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yalcin A, Solakoglu TH, Ozcan SC, Guzel S, Peker S, Celikler S, et al. 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase-3 is required for transforming growth factor β1-enhanced invasion of Panc1 cells in vitro. Biochem Biophys Res Commun. 2017;484:687–93.

    Article  CAS  PubMed  Google Scholar 

  43. DeKoter RP. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science. 2000;288:1439–41.

    Article  CAS  PubMed  Google Scholar 

  44. Antony-Debré I, Paul A, Leite J, Mitchell K, Kim HM, Carvajal LA, et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J Clin Investig. 2017;127:4297–4313.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the patients who donated bone marrow samples that made this work possible. The authors specially thank Dr. Alan G. Rosmarin from the University of Massachusetts, Division of Hematology/Oncology (Worcester, MA) for suggestions and support for this research.

Funding

This work was supported by the National Natural Science Foundation of the People’s Republic of China (Nos. 81070437, 81270614, 81300379, 81570134, 81570141, 81522001, 81200362), National Public Health Grand Research Foundation (No. 201202017), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institute (No. JX10231801) and Key Project of Jiangsu Province Health Agency (K201107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhu or Yaoyu Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Lu, L., Qiao, C. et al. Targeting PFKFB3 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitor. Oncogene 37, 2837–2849 (2018). https://doi.org/10.1038/s41388-018-0157-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0157-8

This article is cited by

Search

Quick links