Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis

Abstract

Recent studies reveal the emerging functions of enhancer RNAs (eRNAs) in gene expression. However, the roles of eRNAs in regulating the expression of heparanase (HPSE), an established endo-β-d-glucuronidase essential for cancer invasion and metastasis, still remain elusive. Herein, through comprehensive analysis of publically available FANTOM5 expression atlas and chromatin interaction dataset, we identified a super enhancer and its derived eRNA facilitating the HPSE expression (HPSE eRNA) in cancers. Gain-of-function and loss-of-function experiments indicated that HPSE eRNA facilitated the in vitro and in vivo tumorigenesis and aggressiveness of cancer cells. Mechanistically, as a p300-regulated nuclear noncoding RNA, HPSE eRNA bond to heterogeneous nuclear ribonucleoprotein U (hnRNPU) to facilitate its interaction with p300 and their enrichment on super enhancer, resulting in chromatin looping between super enhancer and HPSE promoter, p300-mediated transactivation of transcription factor early growth response 1 (EGR1), and subsequent elevation of HPSE expression. In addition, rescue studies in HPSE overexpressing or silencing cancer cells indicated that HPSE eRNA exerted oncogenic properties via driving HPSE expression. In clinical cancer tissues, HPSE eRNA was highly expressed and positively correlated with HPSE levels, and served as an independent prognostic factor for poor outcome of cancer patients. Therefore, these findings indicate that as a novel noncoding RNA, HPSE eRNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med. 1999;5:803–9.

    Article  CAS  PubMed  Google Scholar 

  2. Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N. Heparanase induces endothelial cell migration via protein kinase B/Akt activation. J Biol Chem. 2004;279:23536–41.

    Article  CAS  PubMed  Google Scholar 

  3. Zetser A, Bashenko Y, Miao HQ, Vlodavsky I, Ilan N. Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res. 2003;63:7733–41.

    CAS  PubMed  Google Scholar 

  4. Shinyo Y, Kodama J, Hongo A, Yoshinouchi M, Hiramatsu Y. Heparanase expression is an independent prognostic factor in patients with invasive cervical cancer. Ann Oncol. 2003;14:1505–10.

    Article  CAS  PubMed  Google Scholar 

  5. Valentina M, Maria Francesca S, Giovanni G, Maurizio O. Heparanase as a target in cancer therapy. Curr Cancer Drug Targets. 2014;14:286–93.

    Article  CAS  Google Scholar 

  6. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470:279–83.

    Article  CAS  PubMed  Google Scholar 

  8. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA et al. Transcriptional super-enhancers connected to cell identity and disease. Cell. 2013; 155: https://doi.org/10.1016/j.cell.2013.1009.1053.

  9. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465:182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He B, Chen C, Teng L, Tan K. Global view of enhancer–promoter interactome in human cells. Proc Natl Acad Sci USA. 2014;111:E2191–E2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  CAS  Google Scholar 

  12. Stadlmann S, Moser PL, Pollheimer J, Steiner P, Krugmann J, Dirnhofer S, et al. Heparanase-1 gene expression in normal, hyperplastic and neoplastic prostatic tissue. Eur J Cancer. 2003;39:2229–33.

    Article  CAS  PubMed  Google Scholar 

  13. El-Assal ON, Yamanoi A, Ono T, Kohno H, Nagasue N. The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma. Clin Cancer Res. 2001;7:1299–305.

    CAS  PubMed  Google Scholar 

  14. Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, et al. Heparanase expression correlates with invasion and poor prognosis in gastric cancers. Lab Invest. 2003;83:613–22.

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41:e74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsieh CL, Fei T, Chen Y, Li T, Gao Y, Wang X, et al. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci USA. 2014;111:7319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ogishima T, Shiina H, Breault JE, Terashima M, Honda S, Enokida H, et al. Promoter CpG hypomethylation and transcription factor EGR1 hyperactivate heparanase expression in bladder cancer. Oncogene. 2005;24:6765–72.

    Article  CAS  PubMed  Google Scholar 

  18. de Mestre AM, Rao S, Hornby JR, Soe-Htwe T, Khachigian LM, Hulett MD. Early growth response gene 1 (egr1) regulates heparanase gene transcription in tumor cells. J Biol Chem. 2005;280:35136–47.

    Article  CAS  PubMed  Google Scholar 

  19. Silverman ES, Du J, Williams AJ, Wadgaonkar R, Drazen JM, Collins T. cAMP-response- element-binding-protein-binding protein (CBP) and p300 are transcriptional co-activators of early growth response factor-1 (Egr-1). Biochem J. 1998;336:183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zetser A, Bashenko Y, Edovitsky E, Levy-Adam F, Vlodavsky I, Ilan N. Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res. 2006;66:1455–63.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng L, Jiao W, Song H, Qu H, Li D, Mei H, et al. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell Death Dis. 2016;7:e2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, et al. Functional importance of eRNAs for estrogen-dependent transcriptional activation events. Nature. 2013;498:516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, Oude Vrielink JA, et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell. 2013;49:524–35.

    Article  CAS  PubMed  Google Scholar 

  24. Fairbanks MB, Mildner AM, Leone JW, Cavey GS, Mathews WR, Drong RF, et al. Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J Biol Chem. 1999;274:29587–90.

    Article  CAS  PubMed  Google Scholar 

  25. Abboud-Jarrous G, Rangini-Guetta Z, Aingorn H, Atzmon R, Elgavish S, Peretz T, et al. Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. J Biol Chem. 2005;280:13568–75.

    Article  CAS  PubMed  Google Scholar 

  26. Roshon MJ, Ruley HE. Hypomorphic mutation in hnRNP U results in post-implantation lethality. Transgenic Res. 2005;14:179–92.

    Article  CAS  PubMed  Google Scholar 

  27. Puvvula PK, Desetty RD, Pineau P, Marchio A, Moon A, Dejean A, et al. Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nat Commun. 2014;5:5323.

    Article  PubMed  Google Scholar 

  28. Matsuoka Y, Uehara N, Tsubura A. hnRNP U interacts with the c-Myc-Max complex on the E-box promoter region inducing the ornithine decarboxylase gene. Oncol Rep. 2009;22:249–55.

    CAS  PubMed  Google Scholar 

  29. Bi HS, Yang XY, Yuan JH, Yang F, Xu D, Guo YJ, et al. H19 inhibits RNA polymerase II-mediated transcription by disrupting the hnRNP U–actin complex. Biochim Biophys Acta. 2013;1830:4899–906.

    Article  CAS  PubMed  Google Scholar 

  30. Mattern KA, van der Kraan I, Schul W, de Jong L, van Driel R. Spatial organization of four hnrnp proteins in relation to sites of transcription, to nuclear speckles, and to each other in interphase nuclei and nuclear matrices of HeLa cells. Exp Cell Res. 1999;246:461–70.

    Article  CAS  PubMed  Google Scholar 

  31. Kiledjian M, Dreyfuss G. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J. 1992;11:2655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iyer NG, Ozdag H, Caldas C. p300//CBP and cancer. Oncogene. 2004;23:4225–31.

    Article  CAS  PubMed  Google Scholar 

  33. Dai P, Akimaru H, Tanaka Y, Hou DX, Yasukawa T, Kanei-Ishii C, et al. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 1996;10:528–40.

    Article  CAS  PubMed  Google Scholar 

  34. Lee JS, See RH, Galvin KM, Wang J, Shi Y. Functional interactions between YY1 and adenovirus E1A. Nucleic Acids Res. 1995;23:925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim YW, Kim A. Histone acetylation contributes to chromatin looping between the locus control region and globin gene by influencing hypersensitive site formation. Biochim Biophys Acta. 2013;1829:963–9.

    Article  CAS  PubMed  Google Scholar 

  36. Fang F, Xu Y, Chew KK, Chen X, Ng HH, Matsudaira P. Coactivators p300 and CBP maintain the identity of mouse embryonic stem cells by mediating long-range chromatin structure. Stem Cells. 2014;32:1805–16.

    Article  CAS  PubMed  Google Scholar 

  37. Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med. 2003;9:1026–32.

    Article  CAS  PubMed  Google Scholar 

  38. Hagege H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc. 2007;2:1722–33.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao X, Li D, Pu J, Mei H, Yang D, Xiang X, et al. CTCF cooperates with noncoding RNA MYCNOS to promote neuroblastoma progression through facilitating MYCN expression. Oncogene. 2016;35:3565–76.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Pu J, Qi T, Qi M, Yang C, Li S, et al. MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha. Oncogene. 2014;33:387–97.

    Article  CAS  PubMed  Google Scholar 

  41. Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, et al. microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS ONE. 2013;8:e55719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng L, Pu J, Qi T, Qi M, Li D, Xiang X, et al. miRNA-145 targets v-ets erythroblastosis virus E26 oncogene homolog 1 to suppress the invasion, metastasis, and angiogenesis of gastric cancer cells. Mol Cancer Res. 2013;11:182–93.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng L, Jiao W, Mei H, Song H, Li D, Xiang X, et al. miRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget. 2016;7:40314–28.

    PubMed  PubMed Central  Google Scholar 

  44. Jiang G, Zheng L, Pu J, Mei H, Zhao J, Huang K, et al. Small RNAs targeting transcription start site induce heparanase silencing through interference with transcription initiation in human cancer cells. PLoS ONE. 2012;7:e31379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li D, Mei H, Qi M, Yang D, Zhao X, Xiang X, et al. FOXD3 is a novel tumor suppressor that affects growth, invasion, metastasis and angiogenesis of neuroblastoma. Oncotarget. 2013;4:2021–44.

    PubMed  PubMed Central  Google Scholar 

  46. Li D, Zhao X, Xiao Y, Mei H, Pu J, Xiang X, et al. Intelectin 1 suppresses tumor progression and is associated with improved survival in gastric cancer. Oncotarget. 2015;6:16168–82.

    PubMed  PubMed Central  Google Scholar 

  47. Li D, Mei H, Pu J, Xiang X, Zhao X, Qu H, et al. Intelectin 1 suppresses the growth, invasion and metastasis of neuroblastoma cells through up-regulation of N-myc downstream regulated gene 2. Mol Cancer. 2015;14:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiang X, Zhao X, Qu H, Li D, Yang D, Pu J, et al. Hepatocyte nuclear factor 4 alpha promotes the invasion, metastasis and angiogenesis of neuroblastoma cells via targeting matrix metalloproteinase 14. Cancer Lett. 2015;359:187–97.

    Article  CAS  PubMed  Google Scholar 

  49. Ito A, Lai CH, Zhao X, Si Saito, Hamilton MH, Appella E, et al. p300/CBP- mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 2001;20:1331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qu H, Zheng L, Pu J, Mei H, Xiang X, Zhao X, et al. miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet. 2015;24:2539–51.

    Article  CAS  PubMed  Google Scholar 

  51. Qu H, Zheng L, Jiao W, Mei H, Li D, Song H, et al. Smad4 suppresses the tumorigenesis and aggressiveness of neuroblastoma through repressing the expression of heparanase. Sci Rep. 2016;6:32628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng L, Li D, Xiang X, Tong L, Qi M, Pu J, et al. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14. BMC Cancer. 2013;13:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zheng L, Jiang G, Mei H, Pu J, Dong J, Hou X, et al. Small RNA interference-mediated gene silencing of heparanase abolishes the invasion, metastasis and angiogenesis of gastric cancer cells. BMC Cancer. 2010;10:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Tso-Pang Yao for providing vectors. This work was granted by the National Natural Science Foundation of China (81272779, 81372667, 81472363, 81402301, 81402408, 81572423, 81672500, 81773094, and 81772967), and Natural Science Foundation of Hubei Province (2014CFA012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liduan Zheng or Qiangsong Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, W., Chen, Y., Song, H. et al. HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene 37, 2728–2745 (2018). https://doi.org/10.1038/s41388-018-0128-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0128-0

This article is cited by

Search

Quick links