Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MiRNA-646-mediated reciprocal repression between HIF-1α and MIIP contributes to tumorigenesis of pancreatic cancer

Abstract

Migration and invasion inhibitory protein (MIIP) is recently identified as an inhibitor in tumor development. However, the regulatory mechanism and biological contributions of MIIP in pancreatic cancer (PC) have been not elucidated. In this study, we demonstrated a negative feedback of MIIP and hypoxia-induced factor-1α (HIF-1α), which was mediated by a hypoxia-induced microRNA. Compared with paracarcinoma tissues, MIIP was downregulated in PC tissues. Overexpression of MIIP significantly impeded the proliferation and invasion of PC cells both in vitro and in mouse xenograft models. We further verified MIIP was downregulated under hypoxia in a HIF-1α-mediated manner. Interestingly, although MIIP promoter containing two putative hypoxia response elements (HREs), the chromatin immunoprecipitation (ChIP) and luciferase reporter assays did not support an active interaction between HIF-1α and MIIP promoter. Meanwhile, microRNA array revealed a hypoxia-induced microRNA, miR-646, impaired stability of MIIP mRNA and consequently inhibited its expression by targeting the coding sequence (CDS). Coincidently, knockdown of miR-646 significantly repressed proliferation and invasion ability of PC cells both in vitro and in vivo by upregulating MIIP expression. Besides, ChIP and luciferase reporter assays further validated that HIF-1α activated transcription of miR-646 in hypoxia condition. Therefore, these results suggested HIF-1α indirectly regulated MIIP expression in post-transcriptional level through upregulating miR-646 transcription. Conversely, our results further revealed that MIIP suppressed deacetylase ability of histone deacetylase 6 (HDAC6) to promote the acetylation and degradation of HIF-1α, by which impairing HIF-1α accumulation. What is more, a specific relationship between downregulated MIIP and upregulated miR-646 expression was validated in PC samples. Moreover, the dysregulated miR-646 and MIIP expression was correlated with advanced tumor stage, lymphatic invasion, metastasis and shorter overall survival in PC patients. Together, our results highlight that the reciprocal loop of HIF-1α/miR-646/MIIP might be implemented as an applicable target for pancreatic cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang Y, Wen J, Zhang W. MIIP, a cytoskeleton regulator that blocks cell migration and invasion, delays mitosis, and suppresses tumorogenesis. Curr Protein Pept Sci. 2011;12:68–73.

    Article  CAS  PubMed  Google Scholar 

  2. Sun Y, Ji P, Chen T, Zhou X, Yang D, Guo Y, et al. MIIP haploinsufficiency induces chromosomal instability and promotes tumour progression in colorectal cancer. J Pathol. 2016;241:67–79.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Jing W, Fu J, Ling Y, Wei Z. MIIP accelerates epidermal growth factor receptor protein turnover and attenuates proliferation in non-small cell lung cancer. Oncotarget. 2011;7:9118–34.

    Google Scholar 

  4. Wang Y, Hu L, Ping J, Fei T, Tian W, Liu Y, et al. MIIP remodels Rac1-mediated cytoskeleton structure in suppression of endometrial cancer metastasis. J Hematol Oncol. 2016;9:112.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Song F, Zhang L, Ji P, Zheng H, Zhao Y, Zhang W, et al. Altered expression and loss of heterozygosity of the migration and invasion inhibitory protein (MIIP) gene in breast cancer. Oncol Rep. 2015;33:2771–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ji P, Smith SM, Wang Y, Jiang R, Song SW, Li B, et al. Inhibition of gliomagenesis and attenuation of mitotic transition by MIIP. Oncogene. 2010;29:3501–8.

    Article  CAS  PubMed  Google Scholar 

  7. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4:437.

    Article  CAS  PubMed  Google Scholar 

  8. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastas-- Rev. 2007;26:225.

    Article  CAS  Google Scholar 

  9. Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Key role of pancreatic stellate cells in pancreatic cancer. Cancer Lett. 2015;24:232–8.

    Google Scholar 

  10. Gomezroman N, Sahasrabudhe NM, Mcgregor F, Chalmers AJ, Cassidy J, Plumb J. Hypoxia-inducible factor 1 alpha is required for the tumourigenic and aggressive phenotype associated with Rab25 expression in ovarian cancer. Oncotarget. 2016;7:22650–64.

    Google Scholar 

  11. Wang X, Ren H, Zhao T, Ma W, Dong J, Zhang S, et al. Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Oncotarget. 2016;7:13717–29.

    PubMed  PubMed Central  Google Scholar 

  12. Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol Cell Biol. 2006;26:2019.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja P, et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res. 2006;66:8814–21.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang D, Li J, Costa M, Gao J, Huang C. JNK1 mediates degradation HIF-1alpha by a VHL-independent mechanism that involves the chaperones Hsp90/Hsp70. Cancer Res. 2010;70:813.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wen W, Ding J, Sun W, Wu K, Ning B, Gong W, et al. Suppression of cyclin D1 by hypoxia-inducible factor-1 via direct mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells. Cancer Res. 2010;70:2010.

    Article  CAS  PubMed  Google Scholar 

  16. Lee KJ, Lee KY, Lee YM. Downregulation of a tumor suppressor RECK by hypoxia through recruitment of HDAC1 and HIF-1alpha to reverse HRE site in the promoter. Biochim Biophys Acta. 2010;1803:608.

    Article  CAS  PubMed  Google Scholar 

  17. Shriram N, Chan SY, Joseph L. Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med. 2013;64:20–30.

    Article  Google Scholar 

  18. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, et al. A microRNA signature of hypoxia. Mol Cell Biol. 2007;27:1859–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Fasanaro P, D’Alessandra Y, Di SV, Melchionna R, Romani S, Pompilio G, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3. J Biol Chem. 2008;283:15878–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhang D, Shi Z, Li M, Mi J. Hypoxia-induced miR-424 decreases tumor sensitivity to chemotherapy by inhibiting apoptosis. Cell Death Dis. 2014;5:e1301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wu C, So J, Davisdusenbery BN, Qi HH, Bloch DB, Shi Y, et al. Hypoxia potentiates microRNA-mediated gene silencing through posttranslational modification of argonaute2. Mol Cell Biol. 2011;31:4760–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Chen Z, Li YH, Huang P, Luthra R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010;29:4362.

    Article  CAS  PubMed  Google Scholar 

  23. Loscalzo J. The cellular response to hypoxia: tuning the system with microRNAs. J Clin Invest. 2010;120:3815.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mace TA, Collins AL, Wojcik SE, Croce CM, Lesinski GB, Bloomston M. Hypoxia induces the overexpression of microRNA-21 in pancreatic cancer cells. J Surg Res. 2013;184:855.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wu Q, Liu HO, Liu YD, Liu WS, Pan D, Zhang WJ, et al. Decreased expression of hepatocyte nuclear factor 4α (Hnf4α)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity. J Biol Chem. 2015;290:1170–85.

    Article  CAS  PubMed  Google Scholar 

  26. Jones MF, Hara T, Francis P, Li XL, Bilke S, Zhu Y, et al. The CDX1-microRNA-215 axis regulates colorectal cancer stem cell differentiation. Proc Natl Acad Sci USA. 2015;112:1550–8.

    Article  Google Scholar 

  27. Wu Y, Song S. IIp45 inhibits cell migration through inhibition of HDAC6. J Biol Chem. 2010;285:3554–60.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Ji P, Yang D, Hu L, Cogdell D, Broaddus R, et al. Suppression of endometrial cancer cell migration, invasion, and colony formation by the putative tumor suppressor gene MIIP. Cancer Res. 2011;70:423–423.

    Article  Google Scholar 

  29. Ying Q, Liang L, Guo W, Zha R, Tian Q, Huang S, et al. Hypoxia‐inducible MicroRNA‐210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma. Hepatology. 2011;54:2064–75.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J, et al. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle. 2009;8:2756.

    Article  CAS  PubMed  Google Scholar 

  31. Vaiman D. Genes, epigenetics and miRNA regulation in the placenta. Placenta. 2017;52:127–33.

    Article  CAS  PubMed  Google Scholar 

  32. Hausser J, Syed AP, Bilen B, Zavolan M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res. 2013;23:604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG. Functional microRNA targets in protein coding sequences. Bioinformatics. 2012;28:771.

    Article  CAS  PubMed  Google Scholar 

  34. Duursma AM, Kedde M, Schrier M, Sage CL, Agami R. miR-148 targets human DNMT3b protein coding region. Rna-a Publ Rna Soc. 2008;14:872.

    Article  CAS  Google Scholar 

  35. Zhou H, Rigoutsos I. MiR-103a-3p targets the 5’ UTR of GPRC5A in pancreatic cells. RNA (New Y, NY, USA). 2014;20:1431.

    Article  Google Scholar 

  36. Liu G, Zhang R, Xu J, Wu CI, Lu X. Functional conservation of both CDS- and 3’-UTR-located microRNA binding sites between species. Mol Biol Evol. 2015;32:623.

    Article  CAS  PubMed  Google Scholar 

  37. Hui ABY, Shi W, Boutros PC, Miller N, Pintilie M, Fyles T, et al. Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest. 2009;89:597–606.

    Article  CAS  PubMed  Google Scholar 

  38. Wang R, Zhang J, Jiang W, Ma Y, Li W, Jin B, et al. Association between a variant in microRNA-646 and the susceptibility to hepatocellular carcinoma in a large-scale population. Sci World J. 2014;2014:312704.

    Google Scholar 

  39. Li W, Liu M, Feng Y, Xu YF, Huang YF, Che JP, et al. Downregulated miR-646 in clear cell renal carcinoma correlated with tumour metastasis by targeting the nin one binding protein (NOB1). Br J Cancer. 2011;111:1188–1200.

    Article  Google Scholar 

  40. Azam AT, Bahador R, Hesarikia H, Shakeri M, Yeganeh A. Downregulation of microRNA-217 and microRNA-646 acts as potential predictor biomarkers in progression, metastasis, and unfavorable prognosis of human osteosarcoma. Tumor Biol. 2016;37:5769–73.

    Article  CAS  Google Scholar 

  41. Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 1999;59:3915.

    CAS  PubMed  Google Scholar 

  42. Sermeus A, Michiels C. Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis. 2011;2:e164.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zhu S, Zhou HY, Deng SC, Deng SJ, He C, Li X, et al. ASIC1 and ASIC3 contribute to acidity-induced EMT of pancreatic cancer through activating Ca2+/RhoA pathway. Cell Death Dis. 2017;8:e2806.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Deng S, Xiang L, Yi N, Shuai Z, Yan J, Deng S, et al. MiR-652 inhibits acidic microenvironment-induced epithelial-mesenchymal transition of pancreatic cancer cells by targeting ZEB1. Oncotarget. 2015;6:39661–75.

    PubMed  PubMed Central  Google Scholar 

  45. Xiang L, Deng SJ, Shuai Z, Yan J, Cui SP, Chen JY, et al. Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway. Oncotarget. 2016;7:6000–14.

    PubMed  PubMed Central  Google Scholar 

  46. Liu Y, Li X, Zhu S, Zhang J, Yang M, Qin Q, et al. Ectopic expression of miR-494 inhibited the proliferation, invasion and chemoresistance of pancreatic cancer by regulating SIRT1 and c-Myc. Gene Ther. 2015;22:729.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao G, Zhang JG, Liu Y, Qin Q, Wang B, Tian K, et al. miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol Cancer Ther. 2013;12:83–93.

    Article  CAS  PubMed  Google Scholar 

  48. Chen J, Bai M, Ning C, Xie B, Zhang J, Liao H, et al. Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/AKT/HIF-1α/cyclin D1 pathway. Oncogene. 2016;35:2506.

    Article  CAS  PubMed  Google Scholar 

  49. Krzywinski M, Altman N. Points of significance: power and sample size. Nat Methods. 2013;10:1139–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (no. 81672406, no. 81372666, no. 30972900, and no. 81502076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Jin, Y., Deng, SC. et al. MiRNA-646-mediated reciprocal repression between HIF-1α and MIIP contributes to tumorigenesis of pancreatic cancer. Oncogene 37, 1743–1758 (2018). https://doi.org/10.1038/s41388-017-0082-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0082-2

This article is cited by

Search

Quick links