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BACKGROUND: Nutrition research is relying more on artificial intelligence and machine learning models to understand, diagnose,
predict, and explain data. While artificial intelligence and machine learning models provide powerful modeling tools, failure to use
careful and well-thought-out modeling processes can lead to misleading conclusions and concerns surrounding ethics and bias.
METHODS: Based on our experience as reviewers and journal editors in nutrition and obesity, we identified the most frequently
omitted best practices from statistical modeling and how these same practices extend to machine learning models. We next
addressed areas required for implementation of machine learning that are not included in commercial software packages.
RESULTS: Here, we provide a tutorial on best artificial intelligence and machine learning modeling practices that can reduce
potential ethical problems with a checklist and guiding principles to aid nutrition researchers in developing, evaluating, and
implementing artificial intelligence and machine learning models in nutrition research.
CONCLUSION: The quality of AI/ML modeling in nutrition research requires iterative and tailored processes to mitigate against
potential ethical problems or to predict conclusions that are free of bias.
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INTRODUCTION
Complex, large, and multimodal nutrition datasets are being
aggregated for the purpose of advancing personalized nutrition,
such as the Personalized Responses to Dietary Composition Trial-
1 (PREDICT) study [1], a study focused on nutritional prediction
of glycemic responses [2], and the new Nutrition for Precision
Health program [3]. Such studies and programs highlight a
critical need and growing desire to implement machine learning
(ML) in nutrition research. For nutrition researchers new to ML
but well-versed in statistical methods, using ML models will
require adhering to best practices from statistical methods while
establishing new approaches that address the complexities of
ML models.
The availability of AI/ML capabilities in commercial software

packages has made AI/ML algorithms accessible to the wider
nutrition research community. However, the high accessibility of
AI/ML models through “click and play programs” belies their
complexity, which, when overlooked, can lead to myriad
unanticipated ethical problems that violate published AI principles
[4, 5]. Standardized procedures for the appropriate implementa-
tion of ML models often do not exist. Deceptively simple
questions, such as whether the sample size is adequate for model
fitting, often require iterative evaluation by the modeler that

cannot be built into standardized software. Failure to follow a
reflective thoughtful approach to AI/ML modeling can lead to
errors and biased conclusions that can have deleterious results [6].
Herein we define ML as computer algorithms that improve

automatically through experience [7, 8]. The closely related term
“artificial intelligence” (AI) is often interchanged with ML. AI refers
to an algorithm that can learn insights, adapt through feedback,
be dynamic, respond to its environment, and problem solve
independently with minimal human supervision [8, 9]. ML is
sometimes considered a subset of AI and vice versa, and the terms
are frequently used interchangeably [8]. We, therefore, refer to
both types of algorithms as AI/ML because many of the ethical
concerns discussed herein apply regardless of distinction.
The Alignment Problem by Brian Christian [6] and landmark

studies like those of Buolamwini and Gebru [10] highlight many
unfortunate consequences of launching ML models without
careful examination of the data used for modeling, without
application of more than one modeling approach, and without a
thorough review and surveillance of model predictions and
conclusions. Such negative consequences can range from racial
or other discriminatory predictions, wasted time or opportunity,
negative health outcomes, or even death. Many detrimental
consequences of AI/ML applications covered in Christian’s book
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can be summarized as resulting from poor modeling practices. In
addition, a recent review of 62 studies that used machine learning
to detect and predict COVID-19 from chest radiographs and CT
scans found that every single study had a methodological flaw
[11]. These flaws ranged from lack of transparency regarding how
key modeling decisions were made to not including model
validation experiments [11].
With many and varied approaches available for evaluating AI/

ML models, how can nutrition modelers, manuscript reviewers,
and journal editors ensure that the models are complete,
minimize predictions or conclusions that can cause patient harm,
avoid bias, and minimize ethical violations [12]? While we cannot
address every possible situation and scenario that could arise, we
address common considerations that nutrition researchers may
encounter when developing and/or evaluating AI/ML models. The
considerations we address herein came from our experience as AI/
ML modelers in nutrition, serving as reviewers of AI/ML modeling
articles, and our service as editors for top nutrition research
journals. We frame the discussion for an audience of nutrition
researchers who are familiar with statistical and ML methods in
nutrition research but may be new to or have limited experience
with developing, evaluating, or implementing AI/ML models.
The description and recommendations here build upon an

existing body of literature. The Findable, Accessible, Interoperable,
and Reusable (FAIR) Data Principles [13] involve stewardship and
management of data which have some overlap with AI/ML best
modeling practices. There have been several articles on best AI/ML
modeling practices which draw upon and integrate with FAIR
principles [14, 15]. Articles that provide overviews of machine
learning also include some best modeling practices [16, 17] and
articles that are specific to an application like image analysis [18]
include best modeling practices that scale to other disciplines. In
addition, discipline-specific checklists are now being applied for
publications such as the Checklist for Artificial Intelligence in
Medical Imaging (CLAIM) [19], the machine learning checklist for
Neural Information Processing Systems [20], and the machine
learning reproducibility checklist produced by the Computer
Vision and Pattern Recognition Conference [21]. The guidelines
and checklist presented here focus on the viewpoint of a nutrition
researcher who has a background in statistics and wishes to build
on that background to include AI/ML models to describe, predict
and explain nutrition data.
We begin with some well-known modeling practices derived

from statistical methods that extend to AI/ML modeling. We next
move to two important areas specific to AI/ML model develop-
ment: appropriate sample sizes and balanced datasets. Next, we
address the need for simultaneous development of models and
specifically explainable AI/ML models. Finally, we emphasize the
need for increased data literacy. With the application of new and
complex AI/ML approaches in nutrition research, we as a
community need to learn more about the underlying properties,
requirements, capabilities, and limitations of AI/ML model
development. Because AI/ML approaches are relatively new
[1, 2] in nutrition, many of the examples of bias and error arising
from poor development and evaluation of AI/ML models are
drawn from other disciplines. These examples, while not
specifically in nutrition, provide can raise our awareness of
potential pitfalls as a higher dependence on AI/ML models in
nutrition research advances. Table 1 serves as a Table of Contents,
and Table 2 is a checklist that summarizes our tutorial. The
checklist in Table 2 is presented in order of AI/ML execution
starting with study design and ending with model evaluation.
While every step in the checklist is important as a best practice,
the most important result of the checklist is reproducibility. If we
consider the AI/ML modeling process analogous to the methods
behind the experiment, the checklist provides clear, rigorous, and
transparent guidelines for the methods that ensure the results are
reproducible.

EXTENSIONS TO AI/ML FROM STATISTICAL MODELING
Statistical modeling has well-developed methods for identifying,
mitigating, and transparently reporting bias and error. We
distinguish “bias” in the statistical sense from “bias” in the social
sense. When we discuss bias in a model, we are indicating that
the expectation of the model does not match the true value; that
is, we reliably come to inaccurate conclusions. More specifically,
we are referring to bias that comes from the statistic being used
to estimate a parameter, or we are discussing bias that arises
from using data that is not representative of our population. In
either case, the result of the bias is a parameter estimate that is
not accurate. However, we should note that all bias is not bad;
statisticians will often use a biased estimator if it results in a
lower mean squared error such as what is used in the popular
LASSO algorithm. Biased data, or sampling data that is not
reflective of our population, on the other hand, is rarely a good
idea and can lead to disastrous results if not properly accounted
for. This is different than the social aspects of bias, such as
prejudice. Unfortunately, some forms of bias discussed herein
(attrition bias, selection bias) may result in or result from socially
biased research approaches, which in turn can create a model
that inherits those biases, and ultimately creates a statistically
biased model. Many of the statistically-based quality assurance
checks still apply and are even more important to consider when
developing machine learning models. Unfortunately, these
statistical best practices are oft “forgotten” [22] and are not
standard or routine when reporting the results of machine
learning predictive models. Identifying whether the character-
istics of participants who dropped out were different than
completers, whether missing data were missing at random, or
expressing limitations on extending predictions beyond the
sample are common omissions [23, 24].
Statistical modeling best practices that ensure data are

collected in manners that reduce bias and errors exist and are
also relevant for AI/ML model development. It is not our intent to
provide a comprehensive statistical tutorial on the statistical
methods. Instead, we provide a summary of bias and error that is
often observed in nutrition research and address how statistical
mitigation strategies also prevail for AI/ML models. Some methods
are “best (but oft-forgotten) practices” [25] and we recommend
the statistical series at the American Journal of Clinical Nutrition for
an in-depth tutorial into statistical practices frequently applied in
nutrition research [22].

Measurement error
Take home message. Controlled data with minimal measurement
error are needed as a gold standard to compare clinically relevant
data that the models will be used on. Explainable AI/ML models
are key to understanding the propagation of measurement error.

What is it? There is a wide range of measurements in clinical
nutrition. Measurements of glycated hemoglobin (HbA1c) are

Table 1. The Table of Contents is hyperlinked to ease navigation to
sections within the article.

Hyperlinked Article Sections

Introduction to Extensions of Statistical Methods to AI/ML

Measurement Error

Selection Bias

Sample Size Calculations for AI/ML

Missing Data in AI/ML

Data Imbalance

Explainable AI

Data Literacy: The AI User Responsibility
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Table 2. Checklist for ethical and effective application of AI/ML modeling in nutrition research.

Considerations for Ethical & Effective Application of Machine Learning for Nutrition Research

Item No. Item Recommendations

Study Design

1 Describe Overall Goal Is the purpose to understand new data, select the most informative features from
data, inform other researchers/clinicians/public, develop a model that makes
predictions or diagnoses, or something else?

2 Describe Data Clearly identify

1. The data source

2. When data were collected

3. Over what time period data were collected

4. Whether data will continue to be collected

5. The size of the dataset

6. The collection methodology

Disclose in the manuscript if any of the above are unknown.

Describe

1. The approaches for minimizing measurement error during data collection

2. The approaches for minimizing collection procedure bias

3. Warning labels regarding the representation of the data

If existing data sources are used, why were these particular source(s) used?

Do the data represent the target population(s) (the population that your AI/ML
models will be used to predict) accurately?

4 Discuss AI/ML Suitability Are the modeling approach(es) supervised or unsupervised? Will the models be
updated with additional data and, if so, how?

Explain the suitability of AI/ML to answering the question. For example, is there an
abundance of complex data? What were the results of traditional approaches such as
regression? Do you suspect the data contain underlying patterns or correlations that
a computer could learn?

5 Establish Evaluation Criteria What evaluation criteria will you use to assess the performance of your model(s)?

Why did you settle on these criteria? If using categorical classification, report a
confusion matrix in the results. In the discussion, explain what is the impact is of the
false positive rate and false negative rate on your application. If you are predicting
continuous outcomes, what is the cost of over or under-estimating?

Data Pre-Processing

6 Handle Missing Data What data are missing? What techniques were employed to account for missing data?
If multiple techniques were used, how were they evaluated against each other?

In the discussion, describe the potential cause for missing data. Are the data MCAR
(Missing Completely At Random), MAR (Missing At Random), MNAR (Missing Not At
Random)?

Why did you settle on a particular method for handling missing data?

7 Classify Outliers How were outliers defined? Were outliers removed? What is the impact of including
the outliers on your modeling? Why did you settle on this method to identify and
classify outliers? Simulate the potential comparison of model performance with/
without outliers or outliers defined by different approaches.

8 Balance Classes Did you balance the subgroups used as inputs or the classes you are predicting? What
was the method used to balance the dataset (e.g., up-sampling previously untapped
populations)? Justify the choices of balancing classes. For example, did the initial class
distribution fail to match the distribution of the population for which you are
applying the AI/ML model? Describe your balancing methodology, including
justifying why not balancing would be appropriate if you choose not to balance your
dataset.

9 Select Features Which features from your dataset did you select for AI/ML model training? Were all
available features used or a subset? Explain why the features were selected.

10 Evaluate Dataset Size &
Augmentation

Was the dataset reduced/expanded through resampling or augmentation?

Is the dataset of an appropriate size for the AI/ML modeling methods? Why was the
dataset reduced or expanded? Are you targeting a particular AI/ML algorithm (i.e.,
neural network)?

How will the size of the dataset, after pre-processing, inform the choice AI/ML
algorithm(s) (see next section)?
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objective and correlate to a patient’s diabetes status [26]. On the
other hand, measurements that are obtained from accelerometers
are also objective, but can be extremely noisy and are not able to
estimate physical activity expenditure well in comparison to gold
standard methods [27]. However, the largest source of measure-
ment in nutrition research, self-reported energy intake, is not
objective and sometimes not reliable without triangulating with
other methods [28] for deriving scientific conclusions [29–31].
There are numerous additional diverse measurements in nutrition
research such as clinical energy balance measurements [32, 33],
body composition [34], anthropometry [35], and biomarkers [36].
Within these measurements, some of the measurement errors
occur at random while some are systematic or idiosyncratic.
Statistical modeling has long included discussions of error,

including assumptions about the nature of the error (e.g., normally
distributed with zero mean) that have to be satisfied in order to
make statistical inferences and methods that assume that the true
values are measured with error (e.g. Bayesian error models)
[37, 38]. Because measurement error can render the results of a

study or model meaningless, imprecise, or unreliable [39], there is
a vast literature on handling measurement error [40, 41] in the
context of statistical modeling.

What should we do about it? While we cannot eliminate all
measurement errors, there are best practices to reduce measure-
ment errors during data collection. Some best practices to
minimize measurement error is to take multiple measurements
of the same variable when possible and to collect the data with
precision. For example, body weights should be collected under
similar conditions, such as first thing in the morning, on the same
scale, and in a hospital gown. To obtain information on the
variation in measurements, the measurement should be taken
multiple times (e.g., three times for body weight). How much
measurement error is in the input data needs to be conveyed, not
just in peer-reviewed publications, but also as “warning labels” in
data repositories that will include AI/ML prediction tools. An
exemplar for including warning labels within a data repository is
the All of Us Research Program [42], which alerts data users to the

Table 2. continued

Considerations for Ethical & Effective Application of Machine Learning for Nutrition Research

Item No. Item Recommendations

Algorithm Construction

11 Select Algorithm(s) List all AI/ML modeling approaches that were trained and evaluated.

Justify why the approaches were selected. If only one approach is used, explain why it
was not feasible or not desirable to test more than one model. Is at least one AI/ML
approach explainable? If not, why?

Clearly assess assumptions of the AI/ML models and describe whether they hold.

12 Algorithm Explainability Describe approaches to enhance or select for explainability of models.

Describe the level of explainability of the selected models. Can the model’s decision-
making be understood or interpreted?

If selecting a non-explainable model, justify the choice (e.g., far superior model
performance when non-explainable). If an explainable model was not paired with the
non-explainable example, provide justification.

13 Model Reproducibility Provide the exact hardware, software, and hyperparameter specifications used to
train AI/ML model(s). Supply the algorithms, data, and code to reproduce the model.
Explain the steps required to reproduce the results. If appropriate, explain why data,
code, software, or other artifacts necessary to reproduce the work are not publicly
available.

Algorithm Evaluation

14 Determine Baseline Performance Determine Comparison Performance. What is the state of the model accuracy in the
literature? How are you improving understanding or accuracy beyond what already
exists?

15 Internal Validation Describe how the training and validation/test set were divided and why. Use
evaluation approaches like k-fold cross-validation to capture internal variance. Include
multiple runs on any machine learning model that relies on random initiation of
weights or other model parameters (e.g. neural networks).

Do the results suggest the model was overfitting or underfit? Did you use internal
validation approaches like k-fold cross-validation? If so, what were the results?

16 Determine Best Model Identify and explain which AI/ML model performed the best in accordance with your
chosen evaluation criteria.

17 External Validation Describe any approaches used to externally validate the model (i.e., model validated
on an independent sample).

If not externally validating, why not? If externally validating, explain why that external
data source and approach are being used.

What are the results of external validation? Alternatively, what are the ramifications of
not externally validating?

18 Model Deployment
Considerations

Describe how the model will be deployed and who the end user would be.

Describe the use cases for the model. What are the limitations of the model? How
often should it be reevaluated or retrained? What is the shelf life of the data?

19 Considerations Offer considerations for future research. What additional techniques or data could be
tested?
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quality and distribution of the data during access. A robust list of
resources for tagging data for reuse and reproducibility appears
on the Go FAIR website for the Findable, Accessible, Interoperable,
and Reusable (FAIR) principles [13, 43].
In the case of non-objective measurement error, it has been

suggested that self-reported dietary intake should not be used as
true dietary intake to derive scientific conclusions [29, 30]. This
does not mean that self-reported dietary intake data is not
valuable during interventions. There are examples of self-reported
dietary intake data being used in tandem with other tools such as
energy intake wearables [44, 45] and mathematical models that
predict weight loss to guide intake [46] improving dietary
adherence even more than any of the dietary assessment
methods used alone [28]. The danger of using data like self-
reported dietary intake as true intake to train AI/ML models is that
the models will identify patterns that are artifacts of error from the
input data which will then be used to make erroneous predictions
that inform decision-making. For example, intake has been found
to be underreported in individuals with obesity [31, 47], which has
led to erroneous predictions and conclusions that people with
obesity gain weight while eating less [48]. It is important to note
that if we knew the bias in the self-reported data this could easily
be corrected. Future research should focus on identifying the
magnitude and direction of biases in the data using proxy or
alternate datasets. Multilevel models also serve as potential tools
that should further be studied to determine how they can
potentially be leveraged to correct self-reporting biases [49].
We also need to be concerned about the measurement and its

error under conditions of research versus conditions of use. Using
body weight as an example: if a model is trained on body weight
collected under exacting conditions, multiple times, at the same
time of day, the model may not perform as well when using body
weights taken at the clinic once, at any time of day, often without
removing excess clothing. The measurement for the model thus
does not match the measurement for use.

Extension to AI/ML modeling Errors in measurement have the
potential to result in erroneous decisions. Simple models allow us
to track how error propagates from the initial variable to the final
output. In comparison to simpler explainable models like linear
regression, it is often challenging to track error propagation in AI/
ML models when they contain nonlinearities and interconnections
between variables that are not immediately apparent, also known
as “black boxes” [50]. Furthermore, AI/ML methods often
incorporate nonlinear aspects which tend to exacerbate error
[51]. Specific methods to address individual AI/ML models exist,
but there does not exist a one size fits all solution to generally
characterize error propagation within AI/ML models [51]. The
reliability of a model where the error propagation is unknown
cannot be properly characterized; however, model developers can
look to the literature for the specific model to find methods to
quantify error propagation [52].

Selection bias
Take home message. Characteristics of the dataset, such as
demographics, need to be summarized and explored for limitations
prior to training algorithms. Justification should be provided for why
the AI/MLmodel is appropriate for the sample size. Approaches such
as up-sampling and down-sampling can be cautiously applied using
an iterative process to mitigate concerns about selection bias.

What is it? One of the most well-known examples of selection
bias in artificial intelligence occurred when a Google Photos image
classifier incorrectly identified people of color as gorillas [6].
Google attempted to fix the artificial intelligence model from a
top-down approach relying on various strategies; however, the
underlying problem was that the model training dataset did not
contain enough people of color. This is known as “selection bias”.

Selection bias occurs when the individuals or groups in a dataset
differ from the population of interest in a systematic way [53]. In
the Google Photos example, the data on which the model was
trained did not fully represent the population the models were
applied for. As summarized by Brian Christian, the problem with “a
system that can, in theory, learn just about anything from a set of
examples is that it finds itself, then, at the mercy of the examples
from which it is taught” [6].

What should we do about it? Selection bias awareness is
required in both study design and in reporting model capabilities.
When recruiting, investigators should focus on the population
they hope to generalize to and then recruit participants that meet
those criteria. Recruiting a population that aligns with the target
population for study outcomes will minimize selection bias.
However, such recruitment may require creative ways to reach
previously untapped populations [6].

Extension to AI/ML modeling Recruiting representative popula-
tions for training datasets may not always be possible. For instance,
large datasets may consist of convenience samples like electronic
health records [54]. One method to account for this limitation is to
weigh the data for key characteristics between the sample and
population of interest. Weighting the data for regression applica-
tions is straightforward, but does not extend to AI/ML models that
are often nonlinear. An extension of the statistical weighting
approach to AI/ML models is to “up-sample” or “down-sample” the
data according to weights. For example, if the dataset contains a
sample of 20% females and 80% males, “up-sample” by repeating
the 20% observations until the dataset female:male ratio matches
the population of interest (e.g., ~50%). Conversely, a random sample
of male subjects can be selected to down-sample or develop a
dataset that contains the target female:male ratio. While this
concrete example addresses female:male imbalance, it does not
address other potential imbalances. For example, the female sample
may have a BMI distribution different from the population (e.g., the
sample is all below 25 kg/m2). AI/ML models may therefore
incorrectly learn that females will have BMI below 25 kg/m2 without
appropriately addressing imbalance. In all cases, the limitations of
the data used to train the model should be made explicit in
publications and any software application or tools used to
disseminate the model should warn the user of limitations such as
the characteristics of the training dataset.

CONSIDERATIONS SPECIFIC TO AI/ML MODELING
Sample sizes calculations
Take home message. No one-size-fits-all approach exists to
calculate sample sizes for AI/ML models. Adequate sample size
depends on the application and model complexity. Sample size
calculations for specific AI/ML models often require an iterative
process. For reproducibility, the justification for the sample size
always should be articulated.

What is it? Having a large enough sample to train and test AI/ML
models is critical to avoid overfitting or underfitting models. The
definition of model overfitting is when the model fits too closely to
the training dataset [55], thereby capturing idiosyncrasies of the
observed data rather than generalizing true data properties. Ethical
issues with overfitting occur when models perform well on the
training dataset, but do not translate well to new data. For example,
an overfit model that uses biomarkers to predict patient health will
predict accurately the patient’s health used in the sample to develop
the model, but misdiagnose patients not used in model develop-
ment as being healthy when they actually require treatment [56].
There are several ways to mitigate potential overfitting and sample
size can play a role. In general, the more complex the model (e.g.,
more weights, input variables, and layers in a neural network), the
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more data required to avoid situations like overfitting. Underfitting,
on the other hand, can occur when there is not enough complexity
in the model to match the supplied data [57]. In both cases,
selecting the right sample size depends on the complexity of the
model, tests for goodness of fit in independent data, and iterative
evaluation of the model design versus model’s outcomes. In
addition, in AI/ML models that are used for feature selection or
identifying which variables are relevant, too small of a training
dataset may result in lower data variability and, consequently,
degrade the identification of important features [58].

What should we do about it? Power is the probability of
detecting a difference when one really exists (that is, one minus
the probability of making a type 2 error). In statistical analyses, it is
used to determine the sample size required to make appropriate
and corresponding statistical inferences. Although well-studied in
the area of AI/ML modeling [59], a similar systematic and tractable
method to determine sample sizes for AI/ML models cannot be
provided. The nonlinearity and complexities of AI/ML models and
the multiple models that fall into the category of AI/ML do not
lend well to a uniform process for calculating sample sizes when
compared to more simplistic analyses like a t-test. Despite these
challenges, several published “rules of thumb” exist [60]. For
classification models (e.g., decision trees or neural network
classifiers), a rule-of-thumb is that the sample size needs to be
at least 50–1000 times the number of classes being predicted [61].
For example, if you are predicting categories of obesity (BMI ≥ 30
versus BMI < 30), this is a binary classifier and your sample size
would need to be between 100 and 2000. Similar rules of thumb
exist relating sample sizes to the number of input variables or
features, or sample size to number of weights used in the model.
These rules ultimately relate the sample size to the complexity of
the model (e.g., number of classes predicted, number of variables
used as inputs, the number of hidden layers, or number of
weights) and range widely as demonstrated with the 100–2000
range for a binary classifier. Thus, an iterative process is required
to determine the appropriate sample size tailored for each
individual problem and model. In publications or other forms of
model dissemination, the sample size choice must be justified and
clearly articulated.
For exploratory modeling when the number of covariates is

high compared to the number of data points, regularization
techniques such as LASSO regression or, more generally, Elastic
Net regression offer ways to fit data. Here the resulting parameters
will be biased, however, more complex models can be fit [62].
Whether these techniques are appropriate depends on the overall
goal of modeling, but they are often good tools if practitioners are
attempting to both diagnose a root cause as well as build a
predictive model.

Missing data
Take home message. Nutrition research frequently includes
missing data, such as from incomplete self-reported habits or
missed clinical visits. How we handle missing data can influence
AI/ML model predictions and conclusions. In addition to
traditional statistical approaches for handling missing data such
as imputation, methods using AI/ML models have been developed
to handle missing data. In some cases, missingness can be treated
as a model feature. Lack of adherence to prescribed interventions
and other reasons for missingness can be captured using this
approach.

What is it? Missing data are pervasive in healthcare and
especially common in nutrition research. Missing data can occur
in multiple ways. Nutrition research often relies on logs kept by
human subjects or surveys (such as the food frequency
questionnaire (FFQ), food diaries, or 24-hour recalls) [63].
Individuals may forget to record a specific meal, selectively omit

information due to desirability bias [64], or fail to complete the
dietary instrument altogether. Objective measures, too, may have
missing data, such as missed samples for biomarkers or user and
technological errors failing to record behaviors. Datasets may
therefore be missing individual data points (e.g., a meal), entire
variables (e.g., no blood glucose data), or specific time windows
(e.g., losing a day of data due to technology failures).
There are three main types of missing data and each has different

implications for data analysis [65]. The first is missing completely at
random (MCAR). An example of this is if a researcher is out sick and
misses follow-up appointments with some subjects. The probability
of a data point being missing is then independent of any
characteristics of the participants. MCAR data reduces the sample
size (and study power) depending on the proportion of missing
information. In some cases, information for some missing data can
be inferred from other information in the dataset. However, many
models can use only complete records, but in the case of MCAR,
ignoring missing data will not lead to biased results. This type of
missingness is unlikely. A more common scenario is data that is
missing at random (MAR), which is when the likelihood of a variable
being missing depends on other variables [66]. For example, if
someone leaves out snacks in their meal logs only on days when
they do not exercise, data on snacks would be MAR. Similarly, if
people are more likely to answer survey questions based on their
age or gender, those data would also be MAR. If we use only
complete records with MAR data, we may get a biased estimate of
how prevalent something is in the population (e.g., 100% of people
who snack exercise). For some types of analysis, such as likelihood-
based methods, this type of missingness is considered ignorable,
though this terminology is a misnomer. We cannot ignore that
missingness depends on other observed variables and cannot use
only complete records without introducing bias. For causal
inference, using only complete records can mean we fail to discover
causal relationships (e.g., without any variation in reported snack
behavior we cannot find what causes it). Finally, when the presence
of data depends on the variable of interest itself, data is missing not
at random (MNAR). An example of this is if people only self-report
their weight when it falls in certain ranges if doctors measure HbA1c
when they suspect it is high, or if an individual with diabetes tests
their blood glucose only when they suspect it is too high or too low.
Ignoring incomplete records will lead to biased results. For example,
ignoring times without glucose values will give the impression that
glucose is always at an extreme. Predictive models trained on
datasets with data that are MNAR will fail when used in the real
world, since they will have few examples of glucose values outside
of the extremes. Finally, note that statistical tests to distinguish
whether missing data are MCAR, MAR, or MNAR are often highly
limited.

What should we do about it? Ignoring subjects who dropped out
of a clinical trial can bias results [66], and the same is true for AI/
ML methods. Failing to account for missing data can lead to
incorrect results and models that fail when applied to new
populations. The primary strategies for handling missing data are
imputation or modeling the missingness. The majority of
imputation methods are designed for data that is MAR, and use
observed values to reconstruct missing ones. The simplest
approach, using the mean (or mode) value in the observed data
to replace missing values, has been used widely, but has
significant limitations and is not recommended for use in nutrition
studies. The mean recorded bodyweight or calorie intake in a
dataset is simply not representative of missing instances. Similarly,
carrying forward the last observation (e.g., assuming someone’s
bodyweight is the same until it is next recorded) requires
assumptions about the stability of these variables that are not
justified. More advanced approaches, such as k-nearest neighbor
(kNN), aim to find similar observed instances to missing ones, and
have been applied to FFQ data [67]. Rather than using a
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population average, kNN finds the most similar subjects to one
with missing data, and uses a function of their values to replace
missing ones. Note that this approach is only appropriate for MAR
data, where there is a relationship between observed values and
missing ones. A limitation is that accuracy declines as more
variables are missing for an instance, and it cannot be used when
all data is missing (e.g., for time series data, if all variables are
absent at one-time point). Multiple imputation [68] allows
modeling of uncertainty in missing data. Rather than fill in gaps
with a single value, these methods create multiple imputed
datasets. Combining results on each enables estimates of error
due to the missing data. This approach has been used on FFQ [69],
24-h recall [70], and food log data [71]. For data that are MNAR,
fewer methods exist, though some have been introduced to
model data with variables that may be MNAR or MAR [72].
Notably, missingness can be informative and has been used as a

feature to improve prediction. Intuitively, if a doctor chooses not
to run a test or a person decides not to record a specific meal,
those events are likely to be different from the ones that are
observed. Thus, if we impute values for missing data, but do not
capture the fact that data was not originally recorded, we may lose
valuable information. Lin and Huang [73] showed that including
indicators representing missing data improved predictions from
electronic health record data. This has been repeated using other
methods such as recurrent neural networks [74, 75].

Data imbalance
Take home message. Datasets used for training must be balanced
so models learn what and how input features are important to the
application of the AI/ML model. The definition of balance will
depend on the model type and intended application, but should
consider the distribution of classes in a dataset. There are methods
to “balance” a dataset that should be applied cautiously. For
reproducibility and transparency, the percentage of different
classes available in the training data as well as steps taken to
balance the data need to be articulated.

What is it? Data imbalance occurs when most instances in a
dataset belong to a single or small subset of the total classes. For
example, if females represent only 20% of a training dataset and
males are 80% of the dataset, then we would say the dataset is
imbalanced. Similarly, if a specific outcome of interest occurs at
lower rates than all other outcomes, such as pregnancies
complicated by gestational diabetes, and we are developing an
AI/ML model to predict which pregnancies result in gestational
diabetes, the dataset is also referred to as imbalanced.
In the case where a sub-group is smaller in size than other

groups, AI/ML models “see” the subgroup less when learning. The
lack of exposure can result in poor performance when restricted to
the subgroup. This is exactly what occurred in the Google Photo
example described in the Selection Bias section. While people of
color were contained in the large dataset, the learning models did
not see enough examples of people’s faces to be able to recognize
faces of people of color when presented with a new photo.
In the second case, where the outcome occurs less frequently,

such as gestational diabetes mellitus (GDM), failure to balance the
dataset could result in flawed or non-informative models. It is
estimated that GDM prevalence is between 4 and 10% of all
pregnancies in the United States [76]. An AI/ML model that classifies
GDM pregnancies would need more than 90% accuracy to outper-
form the model that assumes that GDM does not occur. This is
because in the worst-case estimate of 10% prevalence of GDM
pregnancies, the model that assumes GDM never occurs is already
90% accurate.

What should we do about it? In the section on Selection Bias, up-
sampling and down-sampling were already discussed and represent
the most frequently applied method to mitigate problems with data

imbalance. However, sampling up or down should remain an
alternative to the original collection of balanced data. As mentioned
earlier, up-sampling can result in AI/ML models learning artifacts of
up-sampled observations that are not true features. Similarly, down-
sampling the other classifications or subgroups reduces the size of
the dataset to the smallest-sized subgroup.

APPLICATION OF EXPLAINABLE MODELS
Goals of explainable AI
The challenge with modern AI/ML models is that oftentimes the
complexity of the modeling approach comes at a cost of
explainability. This becomes an issue when practitioners attempt
to draw causal or suggest causal relationships between predictors
and response variables in the model. Because there are many AI/ML
modeling approaches, one of the most important best practices is to
use more than one AI/ML method and specifically to combine non-
explainable with explainable models. For example, neural network
classifiers are sometimes referred to as “black boxes” because while
neural networks may have high accuracy for prediction, their
complexity results in loss of explainability. However, using neural
networks in tandem with an explainable method like logistic
regression can circumvent the black box and provide explainability.
In general, to understand what elements of a model should be

explainable it is useful to think of the Generalized Linear Models
(GLM) framework. In this commonly used methodology a
practitioner specifies a linear predictor that captures covariates
of interest, a link function that maps the linear predictor to
function of parameters in the statistical model, and a distribution
function that captures the unexplainable parts of the model. The
covariates, in this case, are the explainable part of the model. The
practitioner may never explain why the uncertainty in the data
follow, say, a gamma distribution, but they can explain the
meaning behind how the explanatory variables are related to the
response. Uncertainty then can further be partitioned through the
use of Generalized Linear Mixed Effects Models (GLMM) that allow
additional model-based uncertainty to be specified, therefore
partitioning the uncertainty into model-based and data-based
uncertainty. An interpretable AI algorithm should seek to behave
similarly, where some key aspects of the model can be captured as
a meaningful part of the parameter. In the machine learning
literature tools such as Gaussian Process Regression have recently
been used to model more complex data patterns than can be
done using GLMMs but in an interpretable manner.

Explainable AI
What is it?. AI/ML models have improved prediction beyond
what was previously possible; however, due to model complexity,
AI/ML models often lose internal model interpretability [77]. This
loss of interpretability can eventually lead to unexpected and
problematic model conclusions [6]. For example, deep convolu-
tion neural networks were trained using images of skin lesions,
and they classified malignant versus benign melanomas with a
high degree of accuracy when compared to the diagnosis of
board-certified dermatologists [78]. However, it was later found
that images of lesions that included rulers were classified as
malignant because the model “learned” that when a ruler was
included in the image, the lesion was more likely to be malignant.
This artifact was introduced because rulers were included in
images when the clinician already thought the lesion was more
likely to be malignant [79]. If this artifact was not detected (that is,
if the model was not explained), the model would have a high
false-negative rate for new images. Explainable AI was promoted
to preserve the high level of desirable accuracy that is provided by
complex AI/ML models while retaining interpretation.
Explainable AI (XAI) [80], is a collection of methods to extract

knowledge from opaque or “black box” machine learning
methods like deep learning. XAI systems have been developed
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to meet this challenge, primarily motivated by image classification
concerns like the erroneous classifications with the ruler in the
image problem [79]. One example of an XAI method that opens
the AI black box for interpretability is a saliency map [81]. A
saliency map reveals information on the degree that each feature
in the image explain and contribute to predictions [82]. Saliency
maps applied in tandem with a deep convolution neural network
can leverage the high degree of accurate predictions while
retaining interpretable and explainable aspects of the underlying
model. Another similar example of XAI used in tandem with a less
explainable model occurs with random forests where one can
compare the “variable importance” resulting from a comparison of
the number of decision trees in which the variable appears,
normalized by the associated node impurity decrease.

What are the available tools and how can they be used to model in
nutrition?. XAI methods in nutrition are just beginning to advance
[50, 83]. For example, XAI has been recently applied to automatic
identification of food from images [84]. Food imaging and
classification have been used in the Remote Food Photography
Method [85] and in eating sensors [86, 87] and represent a novel
objective method to estimate food intake in free-living humans.

DATA LITERACY: THE AI USER RESPONSIBILITY
An issue that is rarely addressed is the accountability of AI/ML
consumers regarding data literacy. Because of our increasing
reliance on AI/ML in nutrition, a certain level of data literacy and
data standards needs to be embraced by all nutrition stake-
holders. A critical component of data literacy is properly specifying
a data-driven question and analyzing whether the question can be
answered through descriptive analytics, diagnostic analytics, or
predictive analytics. Further, as practitioners increase their data
literacy they are better postured to combine the techniques given
above. Indeed, many of the methods that fall under AI/ML are
diverse and require specialized training. Even trained mathema-
tical modelers cannot be experts in all possible methods and areas
– just like any other discipline that interfaces with nutrition.
Therefore, we advocate for more articles like the one presented
here with checklists and summaries that help the nutrition
research community address the right questions that will require
models to be transparent, reproducible, and ethically applied.

CONCLUSIONS
The quality of AI/ML modeling requires iterative and tailored
processes to mitigate against potential ethical problems or to
predict conclusions that are free of bias. Some of these feasibility
checks may require a background in AI/ML training and including
research team members with expertise will provide support for
these analyses. Providing some basic best practice AI/ML modeling
principles provides a path for researchers interested in using AI/ML
models to understand and implement in nutrition applications.

REFERENCES
1. Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, Wolf J, et al. Human post-

prandial responses to food and potential for precision nutrition. Nat Med.
2020;26:964–73.

2. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Perso-
nalized nutrition by prediction of glycemic responses. Cell. 2015;163:1079–94.

3. Li Z, Wang H, Zhang Y, Zhao X. Random forest–based feature selection and
detection method for drunk driving recognition. Int J Distrib Sens Netw.
2020;16:1550147720905234.

4. World Health Organization. WHO Consultation Towards the Development of
guidance on ethics and governance of artificial intelligence for Health Meeting
report Geneva, Switzerland, 2–4 October 2019. World Health Organization; 2021.

5. Inau ET, Sack J, Waltemath D, Zeleke AA. Initiatives, concepts, and implementa-
tion practices of FAIR (findable, accessible, interoperable, and reusable) data

principles in health data stewardship practice: protocol for a scoping review. JMIR
Res Protoc. 2021;10:e22505.

6. Christian B. The alignment problem: machine learning and human values, First
edition. W.W. Norton & Company: New York, NY; 2020.

7. Mitchell TM. Machine Learning: a guide to current research. In: Carbonell JG,
Michalski RS, (eds).

8. Campesato O. Artificial intelligence, machine learning and deep learning.
9. Russell SJ. Artificial intelligence: a modern approach. In: Norvig P, (ed). 3rd ed. ed.

Upper Saddle River, N.J.: Prentice Hall; 2010.
10. Buolamwini J, Gebru T. Gender shades: intersectional accuracy disparities in

commercial gender classification. In: Sorelle AF, Christo W, (eds). Proceedings of
the 1st conference on fairness, accountability and transparency. Proceedings of
Machine Learning Research 2018. p. 77–91.

11. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, et al. Common
pitfalls and recommendations for using machine learning to detect and prog-
nosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell.
2021;3:199–217.

12. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an
algorithm used to manage the health of populations. Science. 2019;366:447–53.

13. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al.
The FAIR Guiding Principles for scientific data management and stewardship. Sci
Data. 2016;3:160018.

14. Artrith N, Butler KT, Coudert F-X, Han S, Isayev O, Jain A, et al. Best practices in
machine learning for chemistry. Nat Chem. 2021;13:505–8.

15. Makarov VA, Stouch T, Allgood B, Willis CD, Lynch N. Best practices for artificial
intelligence in life sciences research. Drug Discov Today. 2021;26:1107–10.

16. Rajkomar A, Dean J, Kohane I. Machine Learning in medicine. 2019;380:1347–58.
17. DeGregory KW, Kuiper P, DeSilvio T, Pleuss JD, Miller R, Roginski JW, et al. A

review of machine learning in obesity. Obes Rev. 2018;19:668–85.
18. England JR, Cheng PM. Artificial intelligence for medical image analysis: a guide

for authors and reviewers. Am J Roentgenol. 2019;212:513–9.
19. Mongan J, Moy L, Charles E Kahn J. Checklist for Artificial Intelligence in Medical

Imaging (CLAIM): a guide for authors and reviewers. 2020;2:e200029.
20. NeurIPS 2022 Paper Checklist Guidelines. In 2022.
21. The Machine Learning Reproducibility Checklist (v2.0, Apr.7 2020). In 2020.
22. Bier DM, Allison DB, Alpers DH, Astrup A, Cashman KD, Coates PM, et al. Intro-

duction to the series “Best (but Oft-Forgotten) Practices”. Am J Clin Nutr.
2015;102:239–40.

23. Shilo S, Godneva A, Rachmiel M, Korem T, Kolobkov D, Karady T, et al. Prediction of
personal glycemic responses to food for individuals with type 1 diabetes through
integration of clinical and microbial data. Diabetes Care. 2022;542:502–511.

24. Gallardo M, Munk MR, Kurmann T, De Zanet S, Mosinska A, Karagoz IK, et al.
Machine learning can predict anti-VEGF treatment demand in a treat-and-extend
regimen for patients with neovascular AMD, DME, and RVO associated macular
edema. Ophthalmol Retin. 2021;5:604–24.

25. Ludwig DS, Ebbeling CB, Wong JMW, Wolfe RR, Wong WW. Methodological error
in measurement of energy expenditure by the doubly labeled water method:
much ado about nothing? Am J Clin Nutr. 2019;110:1253–4.

26. Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of
HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights.
2016;11:95–104.

27. Murakami H, Kawakami R, Nakae S, Yamada Y, Nakata Y, Ohkawara K, et al.
Accuracy of 12 wearable devices for estimating physical activity energy expen-
diture using a metabolic chamber and the doubly labeled water method: vali-
dation study. JMIR mHealth uHealth. 2019;7:e13938.

28. Goldstein CM, Goldstein SP, Thomas DM, Hoover A, Bond DS, Thomas JG. The
Behavioral Intervention with Technology for E-Weight Loss Study (BITES): incor-
porating energy balance models and the bite counter into an online behavioral
weight loss program. J Technol Behav Sci. 2020;6:406–18.

29. Dhurandhar NV, Schoeller D, Brown AW, Heymsfield SB, Thomas D, Sorensen TI,
et al. Energy balance measurement: when something is not better than nothing.
Int J Obes. 2015;39:1109–13.

30. Schoeller DA, Thomas D, Archer E, Heymsfield SB, Blair SN, Goran MI, et al. Self-
report-based estimates of energy intake offer an inadequate basis for scientific
conclusions. Am J Clin Nutr. 2013;97:1413–5.

31. Lichtman SW, Pisarska K, Berman ER, Pestone M, Dowling H, Offenbacher E, et al.
Discrepancy between self-reported and actual caloric intake and exercise in
obese subjects. N Engl J Med. 1992;327:1893–8.

32. Heymsfield SB, Peterson CM, Thomas DM, Hirezi M, Zhang B, Smith S, et al.
Establishing energy requirements for body weight maintenance: validation of an
intake-balance method. BMC Res Notes. 2017;10:220.

33. Hall KD, Guo J, Chen KY, Leibel RL, Reitman ML, Rosenbaum M, et al. Methodo-
logic considerations for measuring energy expenditure differences between diets
varying in carbohydrate using the doubly labeled water method. Am J Clin Nutr.
2019;109:1328–34.

D.M. Thomas et al.

8

Nutrition and Diabetes           (2022) 12:48 



34. Baracos V, Caserotti P, Earthman CP, Fields D, Gallagher D, Hall KD, et al. Advances
in the science and application of body composition measurement. J Parenter
Enter Nutr. 2012;36:96–107.

35. Barber J, Palmese L, Chwastiak LA, Ratliff JC, Reutenauer EL, Jean-Baptiste M, et al.
Reliability and practicality of measuring waist circumference to monitor cardio-
vascular risk among community mental health center patients. Community Ment
Health J. 2014;50:68–74.

36. Schoeller DA. A novel carbon isotope biomarker for dietary sugar. J Nutr.
2013;143:763–5.

37. Taguchi YI, Ki T. Tosa nikki yōkai, Shohan. edn Yūseidō: Tōkyō, 1955.
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