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We searched PubMed for primary research quantifying drug modification of light-induced circadian phase-shifting in rodents. This
search, conducted for work published between 1960 and 2018, yielded a total of 146 papers reporting results from 901 studies.
Relevant articles were those with any extractable data on phase resetting in wildtype (non-trait selected) rodents administered a
drug, alongside a vehicle/control group, near or at the time of exposure. Most circadian pharmacology experiments were done
using drugs thought to act directly on either the brain’s central pacemaker, the suprachiasmatic nucleus (SCN), the SCN’s primary
relay, the retinohypothalamic tract, secondary pathways originating from the medial/dorsal raphe nuclei and intergeniculate leaflet,
or the brain’s sleep-arousal centers. While the neurotransmitter systems underlying these circuits were of particular interest,
including those involving glutamate, gamma-aminobutyric acid, serotonin, and acetylcholine, other signaling modalities have also
been assessed, including agonists and antagonists of receptors linked to dopamine, histamine, endocannabinoids, adenosine,
opioids, and second-messenger pathways downstream of glutamate receptor activation. In an effort to identify drugs that unduly
influence circadian responses to light, we quantified the net effects of each drug class by ratioing the size of the phase-shift
observed after administration to that observed with vehicle in a given experiment. This allowed us to organize data across the
literature, compare the relative efficacy of one mechanism versus another, and clarify which drugs might best suppress or
potentiate phase resetting. Aggregation of the available data in this manner suggested that several candidates might be clinically
relevant as auxiliary treatments to suppress ectopic light responses during shiftwork or amplify the circadian effects of timed bright
light therapy. Future empirical research will be necessary to validate these possibilities.

Neuropsychopharmacology (2022) 47:866–879; https://doi.org/10.1038/s41386-021-01251-8

INTRODUCTION
The suprachiasmatic nucleus (SCN), the central circadian pace-
maker in mammals, integrates the stimulus information it receives
from daily patterns of light exposure to align the phase-
positioning of every organ and tissue collective in the body [1].
Over the past 50 years, the underlying pharmacology that shapes
the magnitude and direction of these phase-shifting responses
has been investigated almost exclusively in rodents and almost
exclusively in piecemeal fashion, probing the isolated effects of
one receptor manipulation in any one experiment. Efforts to
synthesize this literature are lacking by comparison. Here, we
report results from a systematic review of the complete rodent
circadian-pharmacology literature up to 2017–2018. The objective
was to quantify the relative contributions of different neurotrans-
mitter systems to the circadian pacemaker’s photic resetting and
identify clinically meaningful drug targets that might be tested in
humans as countermeasures for situations such as shiftwork. With
rotating or fixed-night schedules, shiftworkers are exposed to
many competing light signals in the morning and throughout the
day in their time off [2, 3]. These signals can interfere with the
SCN’s interpretation of day versus night, with downstream effects
that include: (1) disrupting the robustness of the sleep-wake cycle
[4, 5], (2) suppressing melatonin synthesis [6], and (3) possibly

seeding conditions linked to the immune-weakening effects of
chronic melatonin suppression such as cancer [7, 8]. Identifying
drugs that can augment light responses at night and minimize
light responses during the day has the potential to strengthen the
sleep-wake rhythms of night workers (e.g., nurses, public safety
personnel [9]), with beneficial effects extending to many areas of
mental and physical health [10–12].

MATERIALS AND METHODS
Literature search
We used a two-stage search strategy to collate published research related
to the combinatory effects of light exposure and drug administration on
phase shifts of the rodent circadian activity rhythm. The first stage was
done by querying PubMed with the following terms connected by the
Boolean operators AND/OR: “circadian,” “phase shift,” “light,” “photic,”
“rodent,” “mouse,” “hamster,” and “rat.” This survey resulted in the
identification of 232 unique publication hits. For the second step of the
search, the “related articles” feature on PubMed was consulted to conduct
secondary reviews of all papers associated with the hits. Each publication
prompted 120 cross references (on average), producing a candidate pool
of approximately 28,000 additional articles. All the abstracts from this pool
were scanned for content related to light-induced phase shifting, with
further consideration given to articles describing any pharmacology work.
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Records were independently screened by one of the three authors without
the assistance of automation tools. From May 23rd to December 6th, 2017,
a total of 146 papers were ultimately incorporated into the study database.
Citations for these articles are alphabetically organized within Appendix A.

Inclusion-exclusion criteria and data extraction
Relevant articles were those with any extractable data on photic resetting
enumerated within the main text or tables or those illustrated within a
scatter plot or column graph. For inclusion, papers had to report: 1. Results
from wildtype (non-trait selected) mice, hamsters, or rats; 2. Results from a
group of vehicle-treated animals alongside a group of drug-treated
animals; 3. Delivery of a single light pulse—of defined illuminance and
duration—within a four-hour time window during the subjective night
(CT12 to CT24); and 4. Use of activity rhythms (e.g., via running wheel or
infrared monitoring) as circadian phase markers. Articles were excluded
from further consideration if they did not meet all the aforementioned
criteria or if phase-shifting data could not be unambiguously extracted
from the manuscript’s figures. Where available, data were gathered from
the Methods sections and from the tables of the Results sections. When
data were presented within graphs, the XY Scan program (http://rhig.
physics.yale.edu/~ullrich/software/xyscan/) was used to extract the timing
of the light pulse and the magnitude of the resulting phase shift.
Feedstock data that were introduced into the analysis plan were ultimately
derived from studies that measured a phase-shift of the locomotor activity
rhythm after light exposure sometime between CT12 and CT24; in nearly
all cases, the animals used in these experiments had been housed under
constant darkness. To maximize the amount of data available and best
visualize trends in drug responses, data were compiled from animals
exposed to light during either the first (CT12-CT18) or second-half (CT19-
CT24) of the subjective night. At either time, light exposure produces a
phase-shift of endogenous and observed rhythms but the directionality of
the shift changes: delays are produced in the first-half of the subjective
night, while advances are typically produced in the latter half [13] in
accordance to the rodent phase-response curve (PRC) to light [14, 15].
Among the caveats with this all-inclusive approach is that neurotransmitter
effects on “delays” versus “advances” cannot be distinguished. Another
caveat in the current study was that data were drawn/aggregated from
animals without regards to the characteristics of the light emission (e.g.,
intensity, spectrum) that was used to elicit phase resetting. Finally, it is
important to note that light or glutamate stimulation can modulate phase-
shifts triggered by non-photic, arousal stimuli delivered between CT0 and
CT12 [16–19], the daytime window opposite the nighttime one that is
considered here. Non-photic phase responses associated with novel wheel
running [20], sleep deprivation [21], or NYP injections [22, 23] are all
counteracted by bright light exposure during the subjective day or
subsequent administration of glutamate to the SCN in vitro [24].

Analysis plan
The first part of the review consisted in developing a brief descriptive
summary of the 146 papers in the study database. The following
parameters were calculated:

(1) percentage breakdown of studies involving drugs targeting one of
the four major neurotransmitter systems operating within the SCN,
including glutamate, GABA, serotonin, and acetylcholine (a dot plot
of these data is available in Fig. 1A), and

(2) breakdown in the hourly intervals across the subjective night from
CT12 to CT24 that the effects of light and drug administration were
measured in tandem (a heatmap of these data is available in Fig. 1B).

The second part of our investigation analyzed light-induced phase-
shifting data by drug class. The average phase-shift (hours) that a cohort of
animals exhibited after administration of each drug was ratioed against the
average response made by a control batch of animals shown the same
light stimulus but given vehicle instead (i.e., [magnitude of light-induced
phase-shift after drug administration in a particular study] / [magnitude of
light-induced phase-shift after vehicle administration in that same study]).
These rationed values were then organized according to the drug’s
purported mechanism of action (e.g., all the ratios from cohorts receiving
an “NMDA receptor antagonist” in the study database were grouped
together for subsequent analyses, likewise for those receiving a “GABAA

agonist” or “5-HT1A antagonist”, etc). Ratios settling above a value of 1
indicated that a particular drug class potentiated circadian responses to
light. Alternatively, values falling under 1 indicated that it suppressed light
responses. The performance of each drug class was evaluated by a one-
sample t test to determine whether the net shift it produced relative to
vehicle was statistically different than one, a score which indicates no
changes in phase movements beyond those attributable to light exposure
alone. Significance was set at P = 0.05 (two-tailed). In the Results section,
please note that these ratios are sometimes used to infer percentage
changes in the size of a light-induced phase-shift produced by a particular
drug class. For example if a phase-shift to light exposure was on average
1.3-fold greater in groups of mice receiving a particular type of drug
compared to vehicle, then we refer to that drug as increasing the phase-
shift response by 30%.

RESULTS
Together, glutamate and γ aminobutyric acid (GABA) comprise the
SCN’s most elemental neurotransmitter systems [25–32]. Their
positioning atop this signaling hierarchy has motivated 274
circadian pharmacology studies combined over the past several
decades (Fig. 1A), most of which were conducted at times during

Fig. 1 Drug modulation of light-induced circadian phase shifting. A Percentage of studies conducted over the past half-century targeting
different receptor classes operating within the glutamate, GABA, 5-HT, or acetylcholine transmitter systems. The total number of studies
canvassed is indicated to the right of each dot plot. B Number of studies in the phase-shifting literature broken down by the hour of the
subjective night when combined drug and light exposure were tested. Drugs grouped by those targeting or exerting effects as: A= AMPA/
kainate receptors; B=NMDA receptors; C=mGluRs; D= GABA agonists; E= GABA antagonists; F= 5-HT agonists; G= 5-HT antagonists; H=
5-HT mixed agonist/antagonists; I= nicotinic receptors; and J=muscarinic receptors.
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the subjective night when light exposure generates the largest
delay (CT13-14) or advance shifts (CT18-19) of the locomotor
activity rhythm in mice, rats, and hamsters (Fig. 1B). While several
neural circuits regulate the phase of the SCN, the retinohypotha-
lamic tract (RHT) provides the most direct modulation, originating
from retinal ganglion cells co-expressing glutamate and pituitary
adenylate cyclase-activating peptide (PACAP) [33–41]. The RHT

forms monosynaptic connections onto terminal fields of the SCN
located within the ventrolateral core region, translating photic
information that the retina receives into changes in glutamatergic
transmission from within the SCN [42, 43]. This target area is
enriched for vasoactive intestinal peptide (VIP) positive cells
expressing NMDA-type and AMPA/kainate type excitatory amino
acid receptors [44–56], as well as L-type calcium channels [57].
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The RHT is obligatory for light-induced phase-shifting [58].
Blocking its activity with AMPA, kainate, or NMDA receptor
antagonists significantly reduces the magnitude of circadian
responses. On the other hand, amplifying activity with AMPA
receptor positive allosteric modulators (e.g., aniracetam) enhances
responses beyond those achieved with light exposure alone
(Fig. 2A). Drugs that act at Type I-III metabotropic glutamate
receptors also impart functional changes in the SCN [59–61].
Agonists and antagonists of the mGluR2/3 receptor decrease and
potentiate light-induced phase-resetting, respectively. mGluR5
antagonists also seem to have potentiating effects (Fig. 2A). The
literature concerning glutamate and the SCN suggests that one of
the most direct ways of modulating light-induced phase-shifting is
at the connection point between retinal photoreception and SCN
signaling.
Nearly all neurons inside the SCN proper use GABA as their

predominant neurotransmitter [32, 62–69]. GABA-elicited post-
synaptic currents can be hyperpolarizing (inhibitory) or depolariz-
ing (excitatory) depending on the neuron’s baseline intracellular
chloride concentration set by the relative expression level of Na-K-
2Cl cotransporter 1 (NKCC1) versus K-Cl cotransporter 2 (KCC2)
[70–73]. NKCC1 mediates Cl- uptake and accumulation, establish-
ing a more negative membrane potential upon opening [71, 74].
Conversely, KCC2 opening mediates Cl- extrusion, thereby
depolarizing the membrane potential [75]. The polarity of SCN
GABAergic signaling is shaped by an interplay of developmental
[76–78], physiological [79], time-of-day [80–85], and seasonal
factors [86–88]. In combination, these factors influence the degree
to which GABA synchronizes or desynchronizes pacemaker
neurons and the amplitude of the SCN’s output signal [81, 89–94].
Given the highly dynamic nature of this transmitter gating, it is

perhaps not surprising that both agonists and antagonists of the
ionotropic GABAA receptor interfere with light-induced phase-
resetting (Fig. 2B). In the case of GABAA antagonists, opposing
effects are also possible based on whether the drugs are given
systemically or directly infused within the SCN (Supplementary
Fig. 1) [95]. Adding to the complexity still further, the phase-
shifting effects of GABAA receptor activation may also depend on
whether these receptors are stimulated acutely or in a sustained
fashion [96].
Arguably, GABAB receptors provide a more parsimonious route

for regulating circadian responses by virtue of their localization as
presynaptic autoreceptors on RHT terminals [75, 97–102]. Activa-
tion of them inhibits voltage-gated Ca2+ channels [101, 103],
thereby decreasing RHT glutamate release and behavioral shifts to
light exposure (Fig. 2B). The scale of glutamate and GABA’s effects
on SCN light responses (from near total abrogation to threefold
enhancement) exceeds the effects observed when manipulating
the molecular clock mechanism (Fig. 2B, right side of divided plot).
Considered in full, the literature on SCN GABA suggests that
GABAergic drugs are particularly effective at modulating circadian

light responses. However, owing to changes in the polarity of this
transmitter system along with other nuances, the effects of GABAA

agonists or antagonists may not be immediately predictable.
GABAB receptor agonists, by comparison, offer clearer applicability
for minimizing circadian light resetting because their activation is
directly tied to reductions in RHT activity.
The single largest corpus of work vis-à-vis circadian pharmacol-

ogy (n = 219 studies) has examined manipulations of serotonin (5-
hydroxytryptamine, 5-HT) (Fig. 1A). These assessments have been
conducted at times of night consistent with when evaluations
have been done on the glutamatergic and GABAergic systems
(Fig. 1B). Retinal ganglion cells contributing to the circadian
system send bifurcated axons to the SCN as well as other brain
regions maintaining reciprocal connections with the central pace-
maker, including the median and dorsal raphe nuclei [104–110].
Both raphe nuclei innervate the SCN with mixed serotonergic and
nonserotonergic projections, although the dorsal raphe likely uses
the intergeniculate leaflet (IGL) as a relay [107, 111–114]. The role
of serotonin in light-induced phase-shifting has been debated
since experimentation began [115]. The bulk of data suggest that
5-HT afferents convey information to the SCN about an animal’s
behavioral state, particularly as it relates to sleep and arousal
[116–119]. Acting through a bevy of presynaptic 5-HT autorecep-
tors and postsynaptic 5-HT receptors, serotonin conveys an
arousal signal to the SCN that minimizes its responses to incoming
light signals at the molecular [120, 121], cellular [121–124], and
behavioral [125] level. An alternative corpus of work suggests that
these non-photic effects might be phase dependent, or reversed,
depending on the mix of 5-HT presynaptic and postsynaptic that
are stimulated and/or blocked [126–132].
General enhancement of serotonin with serotonin selective

reuptake inhibitors (SSRIs) or monoamine oxidase inhibitors (e.g.,
clorgyline) diminishes light-induced phase resetting (Fig. 2C).
Divergent effects can be achieved, however, with drugs preferen-
tially targeting one specific 5-HT receptor pathway or another.
Depending on the subtype that is activated and where it is
expressed in the SCN, 5-HT drugs either increase or decrease
phase-shifting. For example, 5HT1B receptor agonists greatly
impair circadian responses made to acute light exposure (by an
average of 70% across studies; Fig. 2C). The effect is likely
mediated by 5HT1B receptors expressed presynaptically on RHT
terminals; When these autoreceptors are activated, they inhibit
glutamate transmission from the RHT to the SCN [133–138].
Further nuances can be found in two separate 5HT1A pathways.

One is formed by 5HT1A receptors expressed postsynaptically on
SCN neurons in target areas that are innervated by the median/
dorsal raphe nuclei [125, 139, 140]. The other is formed by 5HT1A
receptors that are expressed somatodendritically as autoreceptors
on the raphe neurons themselves [141, 142]. Depending on which
5-HT receptor population an agonist is preferential for, phase
shifts to light are either reduced or potentiated (Fig. 2C, last

Fig. 2 The impairing or enhancing effects of major drug classes on light-induced phase-shifting. Data are compiled from individual
experiments. Each data point reflects the average phase response made by a group of drug-treated animals rationed against the average
response made by a control group of vehicle-treated animals assessed at the same time (with the same light stimulus) within the same
experimental series. Asterisks indicate phase movements that were statistically lower or higher than baseline (broken dotted line) when
testing the average phase-shift ratio observed across studies associated with each drug category against an expected value of 1 (no change).
Number of studies for each drug category, (A): AMPA PAM, n= 8; AMPA/Kainate Antagonist, n= 8; NMDA Antagonist, n= 71; mGluR1/2
Agonist, n= 2; mGluR2/3 Agonist, n= 15; mGluR5 agonist, n= 11; mGluR2/3 Antagonist, n= 7; mGluR5 Antagonist, n= 12; (B): GABAA
Agonist, n= 69; GABAB Agonist, n= 12; GABAA Antagonist, n= 20; GABAB Antagonist, n= 2; CK1epsilon Inhibitor, n= 4; mPer1/Per2
Antagonist, n= 13; (C): SSRI, n= 21; Lithium Compound, n= 6; Clorgyline, n= 5; 5HT2C Agonist, n= 2; 5HT2A Agonist, n= 2; 5HT1B Agonist,
n= 22; 5HT1A/7 Agonist, n= 24; 5HT1A Agonist, n= 13; (D): 5HT1 Antagonist, n= 1; 5HT1A Antagonist, n= 21; 5HT1B Antagonist, n= 4;
5HT2/7 Antagonist, n= 13; 5HT5A Antagonist, n= 4; 5HT6 Antagonist, n= 3; 5HT1A Mixed Agonist/Antagonist, n= 36; 5HT1A Antagonist +
5HT1B Agonist, n= 3; (E): nAChRalpha7 Agonist, n= 12; nAChRalpha7 Antagonist, n= 15; M4PAM, n= 10; Muscarinic Receptor Agonist, n= 6;
Muscarinic Receptor Agonist and Antagonist, n= 1; Muscarinic Agonist + Antagonist + M4PAM, n= 1; Muscarinic Receptor Antagonist, n= 6;
(F): Dopamine Agonist, n= 17; Noradrenaline Agonist, n= 7; H1 Antagonist, n= 5; H2 Antagonist, n= 7; H3 Antagonist, n= 4; and Histidine
Decarboxylase Inhibitor, n= 2. *P < 0.05, one sample t test.
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column of data points). In the case of agonists active at raphe-
neuron 5HT1A autoreceptors, potentiation occurs at a level similar
to that observed with AMPA positive allosteric modulators (i.e.,
two or threefold enhancement; Fig. 2A).
In contrast to 5HT1A agonists targeting SCN postsynaptic

receptors, 5HT1A postsynaptic antagonists amplify light responses.
The amplification is similar to that achieved with 5HT1A agonists
targeting raphe-neuron autoreceptors (Fig. 2C, D). 5HT1A mixed
agonist/antagonists, parlaying the complex expression dichotomy
for 5HT1A receptor subtypes in the SCN circuitry, also enhance
light-induced phase-shifting [143–148]. The pattern of all these
5HT1A-related effects is consistent with the general notion that
serotonin signaling from the raphe nuclei normally serves to
impair the SCN’s light responses. Light-induced phase shifting can
thus be enhanced when the serotonin signal is weakened by
either: (1) stimulating raphe-neuron 5HT1A autoreceptors or (2)
blocking 5HT1A postsynaptic receptors expressed by SCN neurons
(Fig. 2C, D). Conversely, photic resetting can be counteracted by
strategies that boost the serotonin signal, such as: (1) blocking
raphe-neuron 5HT1A autoreceptors or (2) stimulating 5HT1A
postsynaptic receptors on SCN neurons (Fig. 2C, D).
A smaller corpus of work (n= 51 studies) has characterized the

role of acetylcholine in the central pacemaker’s responses to light
across the most sensitive areas of the delay and advance zones
(Fig. 1A, B). The SCN is innervated by several brain regions
involved with sleep-wake regulation, among them the basal
forebrain and the pedunculopontine and lateral dorsal tegmen-
tum nuclei implicated in the maintenance of rapid eye movement
(REM) sleep [149–152]. These cholinergic afferents are likely
involved with arousal-driven phase shifts of the SCN’s rhythm and,
as such, a point of entry for crosstalk between the sleep/wake and
circadian timekeeping systems. Blockade of α7 nicotinic receptors
reduces the magnitude of light-induced phase shifts by about
50%. A similar effect is observed when stimulating muscarinic
receptors (including the M4 subtype; Fig. 2E), but the underlying
neurophysiology mediating these responses remains ill-defined
despite previous detection of both acetylcholine receptor classes
within the SCN [153–161]. Given the unknowns in cholinergic
signaling [159], drugs targeting nicotinic or muscarinic receptors
may not be prime candidates for regulating circadian light
responses.
Newer work has highlighted an unexpected role for dopamine

(DA) in modulating adult SCN function and photoentrainment
beyond a developmental window historically thought to restrict
SCN sensitivity to the neurotransmitter [162–165]. DA cells from
the ventral tegmental area of adult rodents connect directly to the
SCN to set the pace of reentrainment following several-hour
displacements of the prevailing LD cycle [166]. A few investiga-
tions have also examined the effects of dopaminergic drugs on
phase-shifting. They have centered on common drugs of abuse
such as cocaine and methamphetamine [167–170], which act by
inhibiting the DA transporter in addition to other monoamine
transporters for noradrenaline and serotonin [171, 172]. Whilst
changes in DA signaling are likely to contribute to the circadian
effects of cocaine and methamphetamine, extant data suggest
that enhancement of serotonin signaling is likewise involved and
may in fact be the primary mechanism by which monoamine
transport blockers modulate the SCN [169]. In keeping with this
suggestion, DA stimulants decrease the size of light-induced
phase shifts (Fig. 2F). Drugs directly modifying other monoamine
systems such as noradrenaline or those altering signaling path-
ways associated with the arousal neurotransmitter, histamine,
elicit either little or no tangible effect (Fig. 2F). Interestingly,
among the neurotransmitters in the brain’s wake-promoting
circuitry, it appears that only serotonin, acetylcholine, and
dopamine are in a position to influence the SCN’s phase-shifting
responses to light exposure.

The raphe nuclei are not the only retinorecipient brain regions
that send information regarding arousal and physiological state to
the SCN so as to modify circadian light responses. Retinal ganglion
cells also convey information to the SCN via an auxiliary route
running through the IGL of the thalamus and the geniculohy-
pothalamic tract (GHT) [173, 174]. The IGL is comprised of neurons
expressing neuropeptide Y (NPY) [175–180]. Analogous to how
serotonin operates through the median raphe nucleus, NPY
neurons of the IGL provide a check on the resetting effects of light
on SCN phase (likely by suppressing SCN responses to retinal
input) [23, 181–192]. Accordingly, NPY agonists attenuate light-
induced phase shifts (Fig. 3A), while antagonists raise the response
ceiling about twofold. The enhancement with NPY antagonists
exceeds what is observed with many of the remaining factors
previously shown to modulate the SCN’s phase-shifting drive
(Fig. 3A–E). IGL cells expressing enkephalin are smaller signaling
elements of this circuitry [193], yet they likewise discourage light-
induced responses when binding δ-opioid receptors located on
RHT presynaptic terminals [179, 194, 195]. Drug agonists or
antagonists of mu (μ) and kappa (κ) opioid receptors do not
appear to influence circadian resetting one way or another
(Fig. 3D).
Another transmitter that has been studied in the context of the

SCN’s light responses is adenosine. It is one of the chemical signals
that mediates the homeostatic effects of prolonged wakefulness
[196–201]. When energy expenditure in the brain exceeds
production after daylong periods of activity, ATP released from
astrocytes is degraded by ectonucleotidases, accumulating in the
extracellular space as adenosine [198, 202–204]. At threshold
concentrations, adenosine then binds to receptors within the
basal forebrain and ventrolateral preoptic nucleus to facilitate
sleep induction [199, 205, 206]. Within the SCN, adenosine also
acts on retinorecipient areas of the ventrolateral core to suppress
light-induced RHT activity. Here, stimulation of adenosine A1

receptors limits intracellular buildup of Ca2+, thereby reducing
excitatory synaptic transmission [207–212]. These physiological
effects are manifested at the behavioral level, where adenosine A1

receptor agonists curtail light-induced shifts of the locomotor
activity rhythm by ~60%. Stimulation of other adenosine receptor
subtypes A2 and A3 are without effect (Fig. 3C). The broader
context for these data suggests that the adenosine pathway
connects sleep homeostatic processes to circadian timekeeping.
Through its encoding of sleep-wake history, such signaling is
thought to coordinate with the SCN’s photic responses in order to
optimize an animal’s sleep timing relative to the light transitions
of the LD schedule [213].
Relative to other transmitter systems, the brain’s cannabinoid

system has been understudied owing to historical roadblocks set
in place by U.S. drug agencies. However, the SCN expresses
receptors for endogenous cannabinoids along the axons of its
resident population of GABAergic neurons. Activation of the major
subtype, cannabinoid receptor 1, decreases GABA release from
presynaptic terminals, thus freeing target neurons from tonic
inhibition and elevating postsynaptic activity in circuits intrinsic to
the SCN [214–218]. Cannabinoids may impart other changes to
SCN excitability by coordinating astrocytic release and extracel-
lular accumulation of adenosine [219]. In keeping with the
predicted functional consequences of elevated adenosine, canna-
binoid receptor agonists greatly reduce the magnitude of phase-
shifts made to acute light exposure by 80% on average (Fig. 3B).
No other pharmacological manipulation appears to be as effective
at inhibiting circadian light responses. As such, exogenous
cannabinoids and synthetic cannabinoid antagonists are worthy
of further study as possible drug regulators of circadian light
responses.
Transmitter systems with a more ambiguous role in SCN

signaling have also been evaluated for their effects on light-
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induced phase-shifting. The SCN evinces a distinct margin of cells
expressing neurokinin 1 (NK1) receptor just inside and extending
to just outside its dorsolateral border [220]. This receptor binds
Substance P. Unlike PACAP, Substance P’s incorporation within the
RHT has been difficult to resolve in studies looking to generalize
the peptide’s optic-tract anatomy and function across mammalian
species [220–222]. In any circumstance, Substance P binding to
NK1 receptor is likely a redundant mechanism that conveys photic
input to the SCN. Commensurate with this notion, NK1 antagonists
elicit small, but significant reductions in light-induced phase-
shifting (Fig. 3E). The marginal effect of Substance P on SCN light
responses stands in contrast to the more substantial effects that
have been characterized with other neuropeptides and hormones,
including corticotropin-releasing factor (CRF) and oxytocin.
The SCN maintains reciprocal connections with the paraventri-

cular nucleus of the hypothalamus (PVH) [223, 224]. These nuclei
coordinate the SCN’s output signal to maintain daily rhythms in
melatonin secretion and glucocorticoid production via timed daily
release of CRF [225–227]. Oxytocin, a hormone known for its
contributions to reproduction and social bonding, also bridges each
nucleus [228–230]. Magnocellular neurosecretory cells of the PVH
are one of the principal sites of oxytocin synthesis in the brain and
both the SCN and PVH express oxytocin receptors [228, 231–233].
Interference with either CRF or oxytocin transmission dampens the
magnitude of pacemaker shifts mobilized by light (Fig. 3E). These
effects may comprise part of a negative feedback mechanism
related to stress and/or a zeitgeber input related to social interaction
that modulates the SCN’s photic responses [234]. Without further
research, however, these possibilities remain speculative.
Within the SCN, synchronization is effected by neuropeptides

such as Gastrin-releasing peptide (GRP; a homolog of bombesin).

GRP localizes to the SCN ventral retinorecipient zone and may
operate as a photic resetting signal within and between SCN
subdivisions [235–243]. GRP binds bombesin 2 (BB2) receptors
[244–246], which exhibit a complex pharmacology amenable to
drugs acting as antagonists as well as partial agonists [247–249].
Administration of BB2 drugs with partial agonist activity, a
maneuver that likely facilitates GRP signaling, leads to correspond-
ing increases in light-induced phase-shifting (Fig. 3E). The
enhancement is similar to that observed after more direct
manipulations of the molecular clock mechanism (Fig. 2B). In
contrast to GRP, pharmacologic manipulations of other synchro-
nization agents in the SCN, such as vasoactive intestinal peptide
(VIP), show little effect (Fig. 3E). As previously suggested [249],
VIP’s ability to phase-shift the central pacemaker when applied to
the SCN without light administration [250] might be over-
shadowed when light is directly used to change the SCN’s phase.
Changing circadian light responses by augmenting/reducing VIP
activity alone might also be futile if there are any signaling
redundancies between GRP and VIP [249].
More reductionistic work has examined molecular pathways in

SCN neurons that tie glutamate receptor activation to changes in
clock gene expression. Dose-dependent activation of AMPA and
NMDA receptors via drug agonists, broad-spectrum light, or site-
specific electrical stimulation of the RHT mobilizes intracellular
Ca2+ entry [57, 251, 252]. Calcium accumulation then triggers
phosphorylation of cAMP response element binding protein
(CREB) [253–257] and induction of immediate-early genes such
as c-fos and jun-B [258–261]. CREB transcriptional activity is driven
through several convergent second-messenger pathways, includ-
ing those anchored by protein kinase A (PKA) [262], calcium/
calmodulin dependent kinase II (CaMKII) [263, 264], and mitogen-

Fig. 3 Other Drug Classes. A–E The impairing or enhancing effects of other drug classes on light-induced phase-shifting. Data are compiled
from individual experiments. Each data point reflects the average phase response made by a group of drug-treated animals rationed against
the average response made by a control group of vehicle-treated animals assessed at the same time (with the same light stimulus) within the
same experimental series. Asterisks indicate phase movements that were statistically lower or higher than baseline (broken dotted line) when
testing the average phase-shift ratio observed across studies associated with each drug category against an expected value of 1 (no change).
*P < 0.05, one sample t test.
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activated protein kinase (MAPK) [265–267]. Upstream, Ca2+ entry
also triggers nitric oxide (NO) production from nitric-oxide
synthase [268–270], stimulating cGMP production [271–273] and
protein kinase G (PKG) activity [274, 275].
Photic stimulation couples to SCN entrainment by way of all

these signaling dynamics [276, 277]. Interruption of any one
step can attenuate transcriptional activation of clock genes (i.e.,
Per1 and Per2) and phase-shifts made in response to light
exposure (Fig. 4). On the other hand, driving these signaling
pathways can produce more robust circadian responses to light,
as exemplified by experiments with clinically relevant phos-
phodiesterase 5 inhibitors preventing the degradation of cGMP
(Fig. 4). Drugs regulating the accumulation of cAMP or cGMP in
SCN neurons post light treatment might represent a subtle way
by which to titrate the SCN’s phase-shifting response to light
exposure.
A final pocket of limited work has evaluated how energy

metabolismmay factor into the SCN’s photic resetting [181, 278–280].
Outside of direct considerations of food entrainment or timing/
mistiming of food intake, available data suggest that administration
of agents signaling low energy status, such as agonists of the
“appetite” hormone ghrelin or glycolysis inhibitors, can reduce phase-
shifts made to light exposure. By contrast, those signaling high
energy status, as achieved through direct infusion of glucose or the
“satiety” hormone leptin, boost light-induced phase-shifting (Fig. 5).
Whether such a low-versus-high metabolic dichotomy operates
endogenously to calibrate the SCN’s photic responses (e.g., by way of

acute dietary fasting or food overconsumption) is currently unknown
and requires empirical study.

DISCUSSION
In the current systematic review, we have summarized the role of
different neurotransmitter systems in the SCN’s phase-shifting
responses to light. Pulling together rodent studies employing
different drug classes up to 2017–2018, we found that most
investigation focused on neurotransmitters expressed within the
SCN proper (e.g., GABA) or those used by SCN afferents with
defined points of origin in the eye or brain, including glutamate,
serotonin, acetylcholine, and NPY. The remaining experiments
characterized a mix of newer and older factors that may modulate
SCN light responses, such as endogenous cannabinoids, the sleep-
homeostatic signal adenosine, as well as signal transduction
pathways that pair RHT activity to changes in clock gene
expression within SCN neurons. Extant data suggest there are
many avenues by which to amplify or diminish the central
pacemaker’s light responses. These avenues are equally visible in
traditional laboratory rodents as well as less commonly used
diurnal rodents such as grass rats. In African grass rats, just as in
mice or hamsters, GABAA and GABAB agonists reduce the size of
phase shifts made to nighttime light exposure [84, 281], while
adenosine antagonists potentiate phase-shifting [282].
For human application, the selection of one particular drug class

or another may depend on the strategies that are implemented to
optimize sleep-wake rhythms. For example, different strategies
might be called on to optimize circadian function in workers with
fixed-night schedules versus shiftworkers exposed to rapidly
changing photic cycles, such as airline pilots and flight attendants.
In the case of night workers, one pattern of use is conceivable. To
maximize the zeitgeber strength of nighttime light exposure,
individuals could use drug classes that potentiate circadian light
responses during their shifts, including 5HT1A autoreceptor
agonists or phosphodiesterase 5 (PDE5) inhibitors. To assure that
alertness is maintained during working hours, particular emphasis

Fig. 4 The impairing or enhancing effects of drugs targeting
second-messenger pathways on light-induced phase-shifting.
Data are compiled from individual experiments. Each data point
reflects the average phase response made by a group of drug-
treated animals rationed against the average response made by a
control group of vehicle-treated animals assessed at the same time
(with the same light stimulus) within the same experimental series.
Asterisks indicate phase movements that were statistically lower or
higher than baseline (broken dotted line) when testing the average
phase-shift ratio observed across studies associated with each drug
class (e.g., Tyrosine Kinase Inhibitors, TTX, etc) against an expected
value of 1 (no change). *P < 0.05, one sample t test.

Fig. 5 The impairing or enhancing effects of metabolic drugs on
light-induced phase-shifting. Data are compiled from a limited
number of individual experiments. Each data point reflects the
average phase response made by a group of drug-treated animals
rationed against the average response made by a control group of
vehicle-treated animals assessed at the same time (with the same
light stimulus) within the same experimental series. Asterisks
indicate phase movements that were statistically lower or higher
than baseline (broken dotted line) when testing the average phase-
shift ratio observed across studies associated with each drug class
(e.g., Ghrelin agonists, Insulin, etc) against an expected value of 1
(no change). *P < 0.05, one sample t test.
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might be placed on taking PDE5 inhibitors such as Sildenafil [283],
which is already approved by the U.S. Food and Drug Adminis-
tration (FDA) for acute treatment of erectile dysfunction [284].
Other investigational PDE5 inhibitors are being developed for the
treatment of cognitive disorders [285]. Advancements in medic-
inal chemistry might thus lead to other structural variations of
PDE5 inhibitors that are tailored to keep night workers at peak
cognitive performance while potentiating the zeitgeber strength
of the prevailing light environment.
Upon ending their shifts in the morning, night workers might

then transition to drugs that will prevent unwanted phase shifts to
light, including GABAB, 5HT1B, and cannabinoid receptor agonists.
For individuals that sleep during the day, a secondary considera-
tion might also involve whether the drug facilitates sleep. With
that added criterion, GABAB and cannabinoid receptor agonists
would be better candidates than 5HT1B agonists [216]. GABAB

receptor agonists cause sedation and promote sleep [286].
Humans have historically used external cannabinoids like THC
(tetrahydrocannabinol) from marijuana and cannabidiol oil from
hemp as recreational drugs. Though research on sleep and
cannabinoids is still in its infancy, preliminary data suggest that
THC can reduce sleep latency, reduce nightmares, and improve
sleep quality in the presence of chronic pain [287]. Future
experiments might test whether different dose schedules, and
prioritizing oral intake versus inhalation, can separate cannabi-
noids’ effects on sleep-wake rhythms versus their better-known
psychogenic properties.
In the case of airline workers, travel itineraries often involve

rapid transit through several time zones before returning home.
Under this scenario, it may be advisable to keep the SCN of airline
personnel in phase with the home time zone so that they can
readjust quickly after their trip. It may also be advisable that they
are as alert as possible while taking drugs that will neutralize light-
induced phase shifts. With this in mind, 5HT1B agonists such as
triptans (e.g., sumatriptan and zolmitriptan) might be realistic
candidates [288]. Triptans are widely prescribed compounds
approved by the FDA for the treatment of cluster headaches,
migraines, and migraine-associated photophobia [289, 290]. Given
their relatively long half-life of ~ 24 h and favorable adverse-effect
profile, triptans could limit the deleterious circadian effects of jet
travel when U.S. pilots are asked to fly to western Europe and back
in the span of a few days.
All of the strategies conceptualized for night workers and airline

personnel are borne out of the present review and the primary
work preceding it. They require empirical clinical investigation to
establish their efficacy. While these strategies remain speculative,
they illustrate some of the secondary and tertiary considerations
that factor into the use cases for taking one drug class or another
to manage circadian light responses. Undoubtedly, other con-
siderations could also be made regarding gender, age, as well as
neurodevelopmental background.
While the present study is the first to tabulate the circadian

pharmacology literature, it comes with a few caveats. First, data
were aggregated from experiments employing different drug
doses and different sites of administration. Thus, drug effects on
light-induced phase-shifting may not be perfectly representative
of what would be observed when dosages are optimized. Second,
to achieve some semblance of statistical power and better
visualize overall trends, data were aggregated from experiments
conducted in the delay (first half) as well as advance zone (second
half) of the subjective night. Circadian photic responses at the
beginning of the night phase might be regulated differently than
those occurring in the later hours before dawn. In all cases where
applicable, we failed to note any general differences in drugs
effects that could be attributable to the time of night when the
experiments were conducted. Finally, data were aggregated from
animals without regards to the characteristics of the light emission
that was used to elicit phase resetting. It is possible that circadian

photic responses are regulated differently based on the properties
of the light exposure, including the emission’s spectrum, intensity,
and duration.
The world faces unprecedented challenges to sleep and

circadian health that are often met with single modality
interventions rooted in either light exposure or drug treatment.
The present systematic review establishes the range of neuro-
transmitter systems that influence the SCN’s photic responses and
emphasizes that this light versus drug distinction might be a false
dichotomy when thinking about potential treatments for shift-
work and the circadian disruptions associated with normative
aging and chronic disease. More integrated therapies that look to
synergize the effects of light exposure with FDA-approved drugs
(or substances generally recognized as safe) might offer better
performing treatment alternatives.
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