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Behavioral phenotyping devices have been successfully used to build ethograms, but many aspects of behavior remain out of reach
of available phenotyping systems. We now report on a novel device, which consists in an open-field platform resting on highly
sensitive piezoelectric (electromechanical) pressure-sensors, with which we could detect the slightest movements (up to individual
heart beats during rest) from freely moving rats and mice. The combination with video recordings and signal analysis based on
time-frequency decomposition, clustering, and machine learning algorithms provided non-invasive access to previously overlooked
behavioral components. The detection of shaking/shivering provided an original readout of fear, distinct from but complementary
to behavioral freezing. Analyzing the dynamics of momentum in locomotion and grooming allowed to identify the signature of gait
and neurodevelopmental pathological phenotypes. We believe that this device represents a significant progress and offers new
opportunities for the awaited advance of behavioral phenotyping.

Neuropsychopharmacology (2022) 47:933–943; https://doi.org/10.1038/s41386-021-01217-w

INTRODUCTION
With the advent of molecular genetics and techniques allowing
to manipulate neuronal physiology with unprecedented versa-
tility and precision, the number of animal models is growing
considerably, supporting a renewed interest for integrative
physiology and behavioral phenotyping. However, the presum-
ably limited introspection and language capabilities of labora-
tory animals promote the need for designing sophisticated
behavioral readout of internal cognitive states.
The extent of the behavioral repertoire we can identify largely

depends on the technologies available for the acquisition of
relevant biological information. In line with pioneering investi-
gation of coordinated sniffing, whisking, and nose and head
movements in the rat using frame-by-frame manual analysis of
video recordings [1], the development of video hardware and
image processing algorithms sustains fast progress in behavioral
phenotyping. Recent examples include 2D [2–4] and 3D [5, 6]
video acquisition, which combined with machine learning
algorithms allowed to identify a number of basic postures and
dynamics of spontaneous behavior [2–4, 6–8], providing a new
vision of the ethogram at the sub-second timescale [6].
Simultaneous video recordings from several angles, including
through a transparent floor plate, could successfully identify the
positions of the paws and other body parts, providing detailed
information about the dynamic coordination of paws and body

movement during locomotion [3, 4, 9–11]. However, most (if not
all) internal movements underlying behavior, such as heartbeat,
shivering, or the dynamics of momentum during locomotion,
remain out of reach from purely visual inspection. Electromyo-
gram or electrocardiogram, as all invasive approaches, are likely
to seriously interfere with spontaneous behavior. Piezoelectric
technology however offers sensors of exquisite sensitivity,
which positioned below the floor plate can be used to collect
the dynamics of movement with very high temporal precision in
a totally non-invasive manner [12, 13]. Plates resting on piezo
sensors or accelerometers have successfully been used to build
automated ethograms, distinguishing various behaviors such as
sleep, rest, grooming, etc… [9, 14–18]. But none of them
provides detailed and quantified information about the precise
dynamics and forces involved in single movements during
spontaneous, ongoing behavior. We now report on a novel
device, the Phenotypix, which consists in an open-field platform
resting on highly sensitive piezoelectric (electromechanical)
pressure-sensors. The combination of such electromechanical
(EM) acquisition with video recordings and signal analysis
based on time-frequency decomposition, clustering, and
machine learning algorithms, allowed us to automatically or
semi-automatically detect and quantify various behavioral
components with high accuracy, such as individual heartbeats
and breathing cycles during rest, shaking in response to fear,
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and the dynamics of balance within individual footsteps during
spontaneous locomotion. We believe that this novel device
represents a significant progress and offers new opportunities
for the awaited advance of behavioral phenotyping.

MATERIALS AND METHODS
Animals
Adult (age 2–4 months) male rats and mice of different strains were
recorded:

2 Sprague–Dawley OFA adult rats, recorded during resting immobility
and sleep
51 adult wild-type mice (23 3xTg-AD-WT, 12 C57B1-6J, 16 FMR1-WT),
including 31 recorded in control condition, 10 after exposure to fearful
conditions, 7 after pre-treatment with Diazepam, and 3 after local
injection of CFA in a rear paw
5 transgenic mice of the Ts65Dn line, a mouse model of Down
Syndrome [19]
11 transgenic Fmr1-KO mice (including 7 for grooming quantification
and 5 for heart-beat monitoring, in control and after injection of BMS-
204352), deficient for both FMR1 RNA and FMR Protein, a model of
Fragile-X Syndrome [20].

For validation purposes, invasive electrophysiological recordings were
performed on an additional 2 rats and 2 mice (age 2–4 months), equipped
with electrode-wires implanted against the diaphragm (to collect ECG and
EMG) and accelerometers (XYZ) on top of the head (to collect head
movement), and recorded on the Phenotypix (to collect EM signal and
synchronous video), in freely moving conditions. These recordings are
described in detail in Supplementary Methods, and illustrated in Fig. 3 and
supplementary Figs. S1, S2, S4, and S5.
The BKCa agonist BMS-204352 (Tocris, 2 mg per kg of body weight, IP),

was dissolved in 0.9% NaCl, 1.25% DMSO, 1.25% Tween-80, 10 ml per kg of
body weight), as in prior studies using BMS-204352 [21, 22].
All animals were bred in the laboratory animal facility in collective

cages, and transferred to individual cages for the duration of the
experiments. Animals were kept on a 12 h/12 h light/dark cycle, provided
with nesting material and food and water ad libitum. All experiments
were performed during the light period under constant mild luminosity
(60-70 Lux). All experimental procedures were performed in accordance
with the EU directives regarding the protection of animals used for
experimental and scientific purposes (86/609/EEC and 2010/63/EU), with
the French law, and approved by the Ethical committee CEEA50 (saisines
#15349, 15350, 10897, 50120156-A and 30823-2021033102337869 v2).

Behavioral data acquisition
The mice and rats were introduced individually onto the recording
platform (Phenotypix, Roddata, Quinsac, France), a dimly illuminated open-
field environment (45 x 35cm), surrounded by 60-cm-high walls and
equipped with video monitoring. The epoxy floor-plate and the walls
were sprayed and wiped clean with 70% ethanol before the introduction
of each animal. Spontaneous behavior was recorded continuously for
durations ranging from 5min to 3 h. In this system, the floor plate is resting
on three evenly distributed (as a triangle) piezoelectric pressure sensors, all
connected together to a single charge amplifier (hence receiving the sum
of the signals from the three sensors), providing a continuous voltage
analog signal (bandpass 0.1 Hz–9 KHz) proportional to the pressure exerted
on the sensors underlying the floor plate, so that any subtle changes in
floor-plate pressure due to animal movement could readily be detected.
Unlike other existing phenotyping systems based on analyzing the
vibrational pattern of the floor-plate to identify ongoing behavior
[14, 18], the Phenotypix rather collects the minute pressure changes
resulting from individual animal movements, which requires optimal signal
preservation and was achieved by minimizing dampening and resonance.
For this purpose, the platform laid on an antivibration table (TMC,
CleanBench Laboratory, Peabody, MA, USA), made of a plain stainless steel
table top (weight about 150 kg) resting on Gimbal Pistons using air
pressure to keep the table top above a heavy (~100 kg) 4-legs frame.
Lighter isolation platforms with pneumatic isolators (Newport Benchtop,
Irvine, CA, USA) did not prove efficient enough to preserve the pressure-
derived signal from vibrations, and the performance of the Phenotypix
were seriously degraded. Recordings were always made with a single
animal at a time to prevent interference between signals from multiple

animals. Video signal was acquired at a sample rate of 25 frames/s with a
webcam placed 1m above the platform, and the electromechanical signal
was recorded continuously at a sampling rate of 20 kHz. Both signals were
acquired synchronously using a Power1401 digitizer and Spike2 software
(CED, Cambridge, UK) and stored on a PC for offline analysis with
EthoVision XT software (Noldus, Wageningen, the Netherlands) and
custom-made matlab scripts (Mathworks, Natik, MA, USA).

EEG recording in freely moving rats
Rats were deeply anesthetized with isoflurane (2–5%) and implanted
with individual 50-µm-diameter insulated tungsten-wires connected to
an Omnetics connector fixed to the cranial bone with dental cement. For
EEG recordings, the electrodes were placed within the hippocampus
under EEG monitoring, at the following coordinates (Paxinos atlas):
AP −3.3, L 2.5, V −2.5 to −2.8. The skin was put back on the skull and
maintained with surgical glue (Gluture, WPI, Sarasota, FL, USA). Before
recording, the animals were kept under daily monitoring for 1 week for
healing and recovery. For recording, the animal was plugged to the
recording system (L8 amplifiers, Neuralynx, Bozeman, MT, USA) with a
tethered headstage (HS-16, Neuralynx), and the wide band (0.1Hz-9kHz)
digitized signal continuously recorded with CED-Spike2 (in synchrony
with the behavioral data) and stored on PC for offline analysis.

Fear conditioning
On day 1, WT mice were transferred from their housing room to the
recording room for a fear conditioning session. After a 5 min acclimation
period to the conditioning chamber, 5 trials (intertrial interval 5–10 min)
were performed, each consisting of 10 intermittent white tones (80 dB,
500 ms duration separated by 1 s), the last five of which paired with
electrical footshocks (duration 1 ms each, intensity 0.075J, delivered
through a metallic floor mesh, Ugo Basile). The mice were brought back
to their housing room after the conditioning session. On day 2, the mice
were tested for contextual fear by being inserted in the recording
chamber (different from the conditioning chamber but in the same
experimental room with the same contextual configuration) for 15 min
of free exploration after which 3 series of tones (conditioned stimulus,
CS) were presented.

Exposure to predator
Individual WT mice could freely explore the recording chamber of the
Phenotypix for 1 h. On the next day, they were placed again in the
recording chamber, from which one of the arena walls had been removed
and replaced by a cage containing an adult Sprague–Dawley rat, with a
grid separating the rat (separated compartment, not in contact with the
piezo sensors) from the mouse (placed on the Phenotypix platform). The
spontaneous behavior of the mouse was recorded during 15min.

Data analysis
The piezosensor-derived signal was first explored visually together with
the video for identification of spontaneous behaviors. For monitoring of
fast behavioral events (e.g. paw movements during grooming), the video
(and synchronized EM trace) was replayed frame-by-frame (cf. Fig. 1).
After visualization of the raw data, manual tagging of the different
behaviors was performed by a trained expert, using Spike2 software.
For further processing, the EM raw data was downsampled from 20KHz
to 1250 Hz using ndmanager plugins [23]. Sonic Visualizer software
was used to explore visually the time-frequency domain of the piezo
derived-signal. Running and immobility periods were selected based on
the animal velocity, calculated from the XY coordinates obtained
through offline automatic animal tracking with Ethovision XT software
(Noldus).
Grooming momentum was quantified automatically using custom

matlab scripts, on manually selected periods (i.e. momentum quantifica-
tion was automatic, but the periods of grooming behavior were manually
identified from the video), as the peak-to-through amplitude of each body
movement-related EM-signal deflection.
Breathing and heartbeat-related movements were identified in the EM

signal based on their shape, kinetics and frequency of occurrence, either
manually or using MiniAnalysis software (Synaptosoft, Decatur, GA), during
manually determined and carefully selected periods of immobility
presenting the highest and clearest signal-to-noise ratio for series of at
least 20 consecutive events for heartbeat, 10 for breathing. For validation
purposes, the EM signal time tags were compared to those independently
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obtained by an expert observer, blind to the EM signal tags, from
diaphram-EMG or video signals (see Figs. 3 and S4).
Shaking detection was done only during periods of immobility (speed

<2.5 cm/s during a least 1 s). Automatic detection of shaking events was
performed as threshold crossing on the bandpass filtered (65–130 Hz),
squared and normalized signal. Automatic detection of freezing events
was performed as threshold crossing on the 5–130 Hz bandpass filtered,
squared and normalized EM signal. The thresholds for event detection
were adjusted manually for each recording, and the outcome of the
detection verified manually using Neuroscope visualization software [23].
Signal decomposition (Fourier Analysis) and quantification were performed
using custom matlab (The Mathworks) code, available upon request.
The dynamics of locomotion were investigated within a similar speed

range in WT and DS mice, during periods of intermediate running speed
selected from Noldus Ethovision XY coordinates by a custom written
matlab script, between 13 and 30 cm/s for a minimum duration of 700ms.
The corresponding EM signal, downsampled to 1250 Hz, was extracted
using a sliding window of 800 samples. In order to discriminate between
the features of locomotion signal issued from control vs CFA treated
animals, we have used Support Vector Machine (SVM). The regression
coefficients obtained from an autoregressive model [24] of order p were
used as input features for k-means clustering [25]. We next identified
“pure” clusters, containing samples from only either CFA or control mice,
and performed on this sub-dataset a classification process using a linear
support vector machine (SVM) [26] approach. In order to find the largest
feature dataset with the highest classification performance, we conducted
a grid search on the following parameters: AR order (p), window size (w),
and number of clusters (k) maximizing an objective function defined by
the product of the feature dataset size and the classification performance
measured by F-score [27]. From the feature dataset maximizing the

objective function we retrieved the corresponding signal windows,
merging them to obtain the signal chunks where discrimination had been
detected. Finally, we carried out the extraction of manually defined
descriptive features on these signal chunks, which showed significant
differences. Moreover, predictive SVM models were built by crossvalidation
experiments using distinct data sets for training and testing, ensuring that
there is no double dipping effect [28] in the estimation of the classification
performance. Our 10-fold crossvalidation experiments in which the dataset
was split into 10 equal subsets, each alternatively used as test-set while the
remaining 9 subsets were used for training the linear SVM model,
produced an F-score of 0.80 (data not shown), which is well above random
choice classification.
Because visual inspection of the signal chunks identified by the

discriminating clusters guided our attention towards the amplitude and
time course of the EM signature of individual footsteps, we have
performed an automatic, systematic quantification of amplitude and half
width of all footsteps emitted by control and CFA mice during locomotion
at comparable running speed (Fig. 5B, C). Periods of locomotion were
selected during which the animal was moving between 13 and 30 cm/s
without interruption and reaching at least 20 cm/s. Individual footsteps
were identified as consecutive suprathreshold peak-trough-peak
sequences from the EM signal, bandpass filtered at various frequencies
using zero-phase distortion filters (i.e. filtering in the forward and backward
direction to prevent phase-distortion). Peaks and troughs were detected as
local extremas in the 0–300 Hz passband filtered EM-signal, within 50ms of
either the minima detected from the 0 to 50 Hz passband filtered signal
(approximative troughs) or of the maxima detected from the 0 to 20 Hz
passband filtered EM-signal (approximative peaks), respectively. Bandpass
filtered 0–5 Hz signal was taken as baseline, and only local minima
(troughs) of amplitude >1 SD from baseline were selected for further

Fig. 1 Pressure-sensor-derived monitoring of various body movements with the Phenotypix system. The Phenotypix system is an open-
field platform lying on pressure sensors allowing to detect various body movements of a freely moving rat or mouse with high sensitivity and
fine time resolution. The video signal (25 frames per second) is recorded simultaneously with the digitized (20 kHz) electromechanical signal
from the pressure sensors, allowing synchronized offline replay for analysis. A Schema of the Phenotypix acquisition system and the sensor-
derived electromechanical (EM) signal elicited by a jumping mouse. Example tracking of the mouse with Noldus Ethovision software: yellow
shape, detected mouse; red dot, central body point; vertical and horizontal blue lines, XY coordinates; red curve, mouse trajectory. B Spectral
composition (power spectral density) of the EM signal recorded during 1 h of free open-field exploration. C–F Typical EM signal generated by
different behaviors (within manually identified behavioral periods). Each trace is shown with the corresponding time-frequency spectrogram.
Time of occurence of specific behaviors (C, locomotion >13 cm/s; D, nose grooming, each cycle of front paw movement appears as a separate
deflection in the mechanical signal; E, grooming of the back; F, sniffing, each deflection corresponds to an individual nose-movement) is
indicated with an horizontal red line, illustrated with pictures taken from the video signal, and decomposed as power spectral density (PSD).
Note the main component around 10 Hz (and presumed harmonics in the 20–30 Hz range) during active behavior.
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footstep analysis. The amplitude of footsteps was measured as the
difference between the trough and the mean of its pre- and post-peaks.
The half-width was measured as the width at half amplitude.
Locomotion and gait were also analyzed at the more global level of

footsteps dynamics (Fig. 5D–F) by comparing the envelopes of
locomotion-related EM signal across conditions. Periods of locomotion
were selected during which the animal was moving for at least 500ms
between 13 and 30 cm/s. The linear correlation coefficient between upper
and lower envelopes was computed automatically for each locomotor
period.

Statistics
Data processing was performed with custom-made scripts and functions
from the Matlab statistics toolbox (Mathworks). Data were systematically
tested for Normal distribution, either with the Lilliefors test, a modification
of the Kolmogorov–Smirnov test recommended for small sample sizes [29],
or with the Kolmogorov–Smirnov test for sample sizes >50. Homoscedas-
ticity was assessed using the Levene’s test. Data following Normal
distributions and with homogenous variances were analyzed using
parametric tests: ANOVA (F) with genotype or condition as factors (and
post hoc Tukey test) for independent data sets, and Student’s t test (t) for
paired data. Data following non-normal distributions were analyzed using
the non-parametric tests Kruskal–Wallis (X2) for multiple groups compar-
isons (post hoc, Dunn–Sidak test) or Wilcoxon rank-sum test (z) for pairwise
comparison of paired data. Results were considered significant for values
of p < 0.05. Data are presented as mean ± SEM.

RESULTS
Resolution of individual movements during spontaneous
behavior in the freely moving mouse
The behavioral phenotyping device (Phenotypix, Roddata, Bor-
deaux, France) was designed to transmit any pressure applied on
the open-field platform (35x45cm) to the underlying piezoelectric
sensors, with minimal dampening and resonance for a faithful
transmission of any movement of the animal (see Online Methods
section for details). The output signal of the piezoelectric sensors
was recorded in synchrony with the video (cf. Fig. 1A), but at much
higher sampling rate (20 kHz instead of 25 frames/s). The
dynamics of animal movement can therefore be resolved with
high temporal precision. As illustrated in Fig. 1B, frequency
decomposition (power spectral density) of the electromechanical
(EM) signal retracing the spontaneous behavior of a wild-type (WT)
mouse during a 1 h open-field session suggests that animal
movements are mostly expressed at frequencies between 0 and
10 Hz. A closer examination of specific behaviors such as walking,
self grooming or sniffing (which periods were manually defined
from the video) revealed that frequency decomposition of the
signal indeed showed a common expression of main temporal
dynamics around 10 Hz. Nevertheless, the signal amplitude and
shape was different for each behavior, presumably resulting in
signal harmonics in the 20–30 Hz range (Fig. 1C–F). Another
interesting observation is that the high-frequency response of the
device and sampling rate of the signal allowed to resolve
individual movements within complex behaviors. As illustrated
in Fig. 1C–F, frame-by-frame analysis of movements related to
specific behaviors revealed that individual footsteps during
locomotion, paw movements during self grooming of the nose,
body twitches during grooming of the back, or coordinated head
and nose movements during sniffing, could be identified and
quantified, providing the time course and momentum of
individual movements within complex behaviors. As a first result
of interest, these observations suggest that most common
behavioral motor components share the same frequency range,
from 5 to 15 Hz. We hypothesize that this frequency range may be
a common tuning of a variety of neuronal networks involved in
the control of voluntary movement. The second interest of these
results is that the resolution of the EM-signal might be used in future
studies as a complement to video data to improve the automatic
detection of behavior and to build ethograms with much improved

precision compared to existing systems [9, 14–18]. An example is
provided in the last section of results, using a combination of video
data, time-frequency decomposition of the EM-signal and machine
learning algorithms for the automatic detection of limp during
locomotion. But in addition to behavior detection, one information
readily obtained from the EM signal and most likely out of reach of
visual inspection, is the strength (momentum) or amplitude of
individual movements. This may be of interest in specific applica-
tions such as the experimental study of self grooming behavior.

Quantification of grooming movement
Recent work suggests that Fmr1-KO mice, a model of Fragile-X
syndrome related with Autism Spectrum Disorders (ASD), express
subtle changes in grooming behavior as a sign of stress when
exposed to a novel environment [30]. Altered grooming might be
related with deficits in motor coordination [31]. On the other
hand, some ASD patients express scratching with excessive
strength, even sometimes resulting in self injury [32]. This aspect
would be interesting to investigate in animal models, but the
available phenotyping devices do not offer, to our knowledge, the
possibility to easily quantify grooming movement strength/
amplitude (momentum) and frequency. Even though movement
frequency and amplitude (e.g. the 3D trajectories of individual
paws) can be investigated from video recordings using proper
machine learning algorithms [33], movement strength/momen-
tum still remains out of reach of video investigation. On the other
hand, as described in Supplementary Methods and illustrated in
Figs. S1 and S2, such quantitative aspects of behavior might be
readily captured by the Phenotypix.
As illustrated in Fig. 2, we have here quantified the amplitude

and frequency of the EM signal associated with grooming of the
back and belly in Fmr1-KO mice (n= 6 and 7 animals,
respectively), and found that they were differentially affected.
The behavioural periods specifically spent in grooming either the
back or the belly were manually defined offline from the video,
and custom matlab scripts used to automatically detect the
precise time of occurrence and quantify the amplitude of the EM
signal associated with each grooming movement within grooming
periods. The main change regarding grooming of the back was an
increase in frequency (z=−19.338, p < 0.001) while amplitude
was hardly affected (WT vs Fmr1-KO, z= 2.193, p= 0.028). On the
other hand, the main change regarding grooming of the belly was
an increase in amplitude (WT vs Fmr1-KO, z= 29.147, p < 0.001)
while the frequency was hardly affected (z=−5.080, p < 0.001).
Therefore, subtle changes associated with specific movements are
readily detectable from the EM-signal.

Non-invasive monitoring of breathing and heartbeat for the
detection of sleep and emotional states
Other very subtle movements, that can also serve as an index of
emotional regulation, are breathing and heartbeat. Interestingly,
heart rate is also an index of vagal/parasympathetic tonus,
considered to be misregulated in some pathologies such as
Fragile-X syndrome (FXS).
Within the EM signal obtained from a rat during sleep and

immobility, we actually noticed events that seemed to correspond
to breathing and heartbeat (Fig. S3). The signal-to-noise ratio was
highest during sleep and lower during rest, probably because the
movements issued from the heart and chest were transferred less
directly to the sensors when the animal was resting on his paws
than when his chest was in direct contact with the floor-plate. As a
validation procedure, we did observe that, as described in the
literature, breathing was more regular during slow wave sleep (SWS)
than during REM sleep, the two main brain states here identified by
the theta/delta ratio of the EEG, simultaneously recorded from the
hippocampus. But as described in Supplementary Methods
and illustrated in Figs. 3A–C and S4, more direct evidence was
provided by concomitant recording of heart and breathing activity
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using invasive electrocardiogram (ECG) and electromyogram (EMG)
monitoring in freely moving animals, which demonstrated reliable
monitoring of heartbeat and breathing from the EM signal. Because
the animals (in particular mice, due to their small size) are likely to be
perturbed by the presence of implanted devices (e.g. internal
pressure sensors or ECG electrodes), we have used the EM signal as
a non-invasive measure of heart rate in control WT and Fmr1-KO
mice (a transgenic mouse model of FXS) at rest in a familiar
environment. As illustrated in Fig. 3G, H, we have found that Fmr1-
KO mice had an increased basal heart rate compared to WT mice (t
(17)=−7.26; p < 0.001), rescued to normal levels by the BKCa
channel agonist BMS-204352 (paired t-test, KO vs KO+ BMS: t(4)=
6.62; p= 0.003, and independent samples t-test WT vs KO+ BMS: t
(17)=−1.39; p= 0.18). This is compatible with the clinical hypoth-
esis that abnormal sympathetic/parasympathetic regulation may
participate in the anxiety, behavioral distress, and gaze avoidance

typically observed in FXS children [34–36], and confirms BKCa as a
potentially relevant molecular target for the development of drug
medication against FXS/ASD [30].

High-frequency shivering associated with fear
Although the temporal dynamics of normal movements seem to
be mostly confined to frequencies within the 0–15 Hz range, we
did notice faster components in specific experimental conditions.
A behavioral condition of interest in terms of motor expression is
that of fear, characterized either by the active suppression of
movement (freezing), or by the expression in various body parts of
high-frequency uncontrolled muscle contractions (shaking/shiver-
ing). While freezing behavior is classically quantified manually
from video recordings, non-invasive detection of shaking/shiver-
ing has to our knowledge not been reported, and its behavioural
expression is hardly investigated at all. Because freezing and

Fig. 2 Pressure-sensor-derived monitoring of grooming of the back and belly in WT and Fmr1-KO mice. A Typical example of sensor-
derived (EM) signal related with grooming periods of different body parts identified manually from the video recording (horizontal bar: white,
grooming of the nose, black, of the back, and gray, of the belly) in a WT mouse. B–D Electromechanical signal typical of a back-grooming
episode, in WT mice (B, WT) and in Fmr1-KO mice (B, KO). The normalized cumulative distributions (C, D, left; black curves, WT; red curves, KO;
superimposed bar histograms, difference between WT and KO) and averages across animals (C, D, right) of grooming signal amplitude (C) and
inter-movement interval (D). E–G Same as in C, D but for grooming of the belly, indicating the amplitude and frequency of grooming of the
belly in Fmr1-KO compared to WTmice. Note the clear increases in amplitude for grooming of the belly and in frequency (i.e. decreased inter-
event intervals) for grooming of the back in Fmr1-KO compared to WT mice (*p < 0.05; ***p < 0.001).
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shaking may interestingly represent distinct but overlooked aspects
of fear, we have looked for their potential specific signatures in the
time-frequency composition of the EM signal of mice after
contextual fear conditioning. Episodes of total immobility could be
automatically detected with high efficiency and reliability (cf.
Supplementary Methods and Fig. S5A–B) using a script collecting
periods of EM signal below a manually set threshold of power in the
5–130 Hz frequency range (Fig. 4A). In addition, we noticed the high
incidence of high-frequency (80–120Hz) shaking events when the
animal was inserted in the recording arena after fear conditioning
(Fig. 4B). The detection of shaking/shivering from the piezo signal is
based on the expression of high-frequency components in the piezo
signal which are hardly expressed during immobility in control
condition. Nevertheless, during active behavior (eg grooming,
locomotion, etc…), movements with fast kinetics and large
amplitude do carry a significant amount of high-frequency
components in control conditions, which overlap with that of
shaking. We have thus compared the expression of high-frequency
components during the whole recording vs specific periods of either
immobility or movement/locomotion. As illustrated in Fig. S5C–D
(complementary to Fig. 4E), the increased expression of high-
frequency components during fearful conditions could be detected
from the whole recording (i.e. all behaviors included). But the main

contributor to shaking-related high-frequency components is
immobility, because contrary to immobility, there was no statistically
significant difference between experimental conditions to reveal
increased expression of shaking-related high-frequency components
during movement periods. We have therefore restricted our
detection analysis of shaking/shivering to immobility periods.
When we compared the times of occurrence of shaking and

freezing in different behavioral conditions (Fig. 4C–F, n= 7
animals), we found that shaking was predominantly expressed
as a behavioral response to context but not to the conditioned
stimulus (Control vs Fear Context, F(2,18)= 35.639, p < 0.001;
Control vs CS, F(2,18)= 35.639, p= 0.953), while it was the
opposite for freezing (Control vs Fear context, F(2,18)= 24.493,
p= 0.614; Control vs CS, F(2,18)= 24.493, p < 0.001), raising the
possibility that shaking may be a behavioral response to diffuse
threat and freezing to imminent threat. A confounding factor with
freezing is that it was difficult from visual inspection to distinguish
between immobility periods due to the real expression of fear
from behavioral immobility associated with brief rest or active
scanning of the environment. Short immobility periods (<2 s) were
detected by our algorithm during the first minutes of exploration.
In the literature, a classical approximation is to consider
immobility periods > 2 s as freezing and to ignore those of shorter

Fig. 3 Pressure-sensor-derived monitoring of breathing and heart-beat. A Schematic display of the periods with favorable signal-to-noise
ratio for breathing (top, red) and heartbeat (bottom, gray) analysis, identified manually from the EM signal recorded from a freely moving mouse.
The vertical black bar above the asterisk corresponds to the period which EM signal and ECG/EMG traces are shown in C. B, C Simultaneously
recorded electromechanical signal (EM, upper traces) and electrocardiogram/electromyogram (ECG/EMG, lower traces, also shown as integrated
signal in red) from the freely moving rat (B) and mouse (C). Note the slow and higher frequency components of the EM-signal derived from
breathing and heartbeat, represented in middle traces (upper middle, linearized breathing cycles in red, lower middle, linearized heartbeat cycles
in black) as broken lines. D–G Comparison of heart and breathing rates measured from the EM signal (X-axis) and ECG/EMG (Y-axis) in the rat
(D, F) and in the mouse (E, G) over discrete periods of at least 20 contiguous heartbeat/10 breathing events. Note the tight correlation (Pearson
correlation coefficient, r > 0.99) between EM and ECG/EMG-derived evaluation of heart and breathing rates. H Electromechanical signal and
linearized heartbeat cycles during spontaneous immobility in a familiar environment from a representative WT (upper trace), Fmr1-KO (middle
trace), and Fmr1-KO mouse injected with BMS (lower trace). I Average heart rate during awake immobility in WT, Fmr1-KO and Fmr1-KO mice
injected with BMS (*p < 0.05.).
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durations. Accordingly, mice inserted in a novel environment (n=
7 animals) expressed shaking during the first few minutes while
little freezing behavior (> 2 s) could be identified. Nevertheless,
pre-treatment with the anxiolytic Diazepam (at the non-sedative
dose of 1.5 mg/kg, n= 6 animals) fully abolished the shaking
events expressed during the first few minutes in the environment
(Control vs DZ, t(11)= 5.052, p < 0.001), but did not significantly
reduce the number of freezing episodes (Control vs DZ, t(11)=
−0.517, p= 0.6153). Further investigation may evaluate whether
these brief immobility periods are related with mild anxiety and
increased attention to potential alerts in an unfamiliar environ-
ment. The possibility that shaking and freezing might be distinct
signatures of fear was further suggested by the behavioral
reaction of mice exposed to the presence of a rat, one of their
natural predators, which induced at times the remarkable
expression of shaking with little freezing (Fig. S6). Therefore, the
Phenotypix proved efficient to detect and quantify internal
movements such as heartbeat or shaking/shivering, hardly
detectable by the eye of a human observer.

Gait and time course of individual footsteps
Another interesting aspect of pressure sensors is the possibility to
evaluate the dynamics of the coordination and strengths of limb
movements (momentum) involved in locomotion. Locomotion has
been extensively studied using various experimental paradigms
associated with image processing tools allowing to gather increas-
ingly sophisticated spatio-temporal information about stride or
stance. Nevertheless, it has remained quite out of reach to get non-
invasive information about the dynamics of momentum, which can
not be evaluated by visual inspection, however sophisticated. We
observed that the EM signal provides some information about the
dynamics of locomotion.
Frame by frame analysis of the synchronously recorded video

signal allows to depict the EM signature of individual footsteps. In
the short sample of spontaneous locomotion illustrated in Fig. 5A,
one can distinguish a few initial footsteps of small amplitude, that
correspond to orienting behavior (the mouse was changing
direction but not moving forward). The EM signature of
locomotion, with the animal really starting to move ahead, then

Fig. 4 Pressure-sensor-derived detection of fear-related freezing and shaking. A Electromechanical signal (top trace, raw data) and
associated time-frequency spectrogram (underneath color plot, left scale is frequency range, color scale indicates power) show the presence
of transient immobility periods (freezing, blue asterisk) during spontaneous exploration of a novel environment in a naive mouse. Below are
shown a single freezing event (blue box, ii) vs basal resting condition (gray box, i), displayed at wider time scale above the corresponding
Power Density Spectra. Note the strong drop in power at all frequencies during freezing. B. Electromechanical signal (top trace, raw data) and
associated time-frequency spectrogram (underneath color plot, left scale is frequency range, color scale indicates power) show the presence
of spontaneous transient 80–120 Hz oscillations in the signal (shaking, red asterisk) during behavioural rest from a mouse after contextual fear
conditioning. Below are shown a single shaking event (red box, i) vs basal resting condition (gray box, ii), displayed at wider time scale above
the corresponding Power Density Spectra. The signal in the blue box (blue asterisk) corresponds to a freezing episode. Note the high power in
the 80–120 Hz frequency range during shaking. C, D Time course of occurrence of freezing (color coded horizontal time tags, freezing periods),
detected as infra-threshold power in the 5–130 Hz frequency range) and shaking (blue line, detected as supra-threshold power in the
65–130 Hz frequency range and displayed as number of events per min, time bin 1min) events over 13min of recording before (C, Control)
and after (D, Fear) contextual fear conditioning. Freezing episodes are indicated according to their duration: brief (<1 s, in cyan), intermediate
(1–2 s, in magenta), long (>2 s, in green). E, F Bar plots of global expression of spontaneous freezing (E) and 65–130 Hz shaking events (F)
either in control conditions (novel environment, NE), before and after pre-treatment with the anxiolytic Diazepam (+DZ), or after contextual
fear conditioning (Fear context/CS, conditioned stimulus). Note that while freezing is the dominant behavioural expression of fear in response
to CS, shaking is the dominant expression of context-related fear. ***p < 0.001.
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becomes much more visible, as series of 5–10 footsteps of
increasing and then decreasing amplitude, displaying a spindle
pattern that turned out to be very typical of mouse locomotion.
Because the EM signal is the result of the dynamic distribution of

weight and of all the forces generated by a multitude of muscles
within the animal’s body, it is a complex mixture that depends on
the coordination of the various limbs and strengths (momentum)
involved in movement. Nevertheless, we think that the very

Fig. 5 Pressure-sensor-derived signature of gait during spontaneous locomotion. A. Typical Electromechanical signature of mouse
locomotion. Images 1–5, successive video frames (white asterisk, right rear paw). Note the very light electromechanical signal generated by
orientation footsteps (#1–2, when the mouse is changing orientation) compared to the strong signature of forward footsteps (#3–5, each
footstep appears as a fast downward/upward deflection when the mouse is giving impulsion to move forward). B, C The signature of
individual footsteps during locomotion is affected in mice with a sore paw. Electromechanical signal typical of a locomotor episode (speed
13–23 cm/s; right, zoom on an individual footstep), either in normal conditions (Ct, upper traces) or after CFA-induced inflammatory pain in
the left rear paw (CFA, lower traces). The normalized cumulative distributions (C, left; black curves, Ct; red curves, CFA; superimposed bar
histograms, difference between Ct and CFA) and averages across animals (C, right) of footsteps amplitude (upper plots) and half-width (lower
plots) indicate the presence of footsteps of statistically significant (***p < 0.001) lower amplitude and slower kinetics in CFA compared to
control mice. D–F The correlation coefficient between the upper and lower EM signal envelopes (D, orange and yellow lines respectively) was
computed as an index of the timecourse profile of successive footsteps during locomotor events (homogenous speed range, 13–30 cm/s) in
control (WT) and Ts65Dn (DS) mice. The distribution of correlation coefficients of all locomotor episodes is presented as a normalized
cumulative histogram (E), as a moustache plot (F, left) and as mean and SEM (F, right). Note the statiscally different (*p < 0.05) correlation
coefficients between upper and lower envelopes in WT vs DS mice.
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stereotypical signature of spontaneous locomotion in WT mice
may serve as a reference template for the detection of motor
impairment in various models of pathology.
As a first example, we recorded the EM signal of mice injected

with CFA in one of the rear paws, producing local inflammation so
that the animal tended to avoid pressing on the sore paw. Using a
machine learning approach combining linear Support Vector
Machine (SVM) classifier, autoregressive model (AR) feature
extraction, and k-means clustering (see Online Methods section),
we identified clusters of footsteps that differentiated control from
CFA mice. Visual inspection of the signal chunks identified by the
discriminating clusters guided our attention towards the ampli-
tude and time course of the EM signature of individual footsteps.
We therefore performed a systematic quantification of amplitude
and half width of all footsteps emitted by control and CFA mice
during locomotion at comparable running speed (n= 9 animals in
each condition). As illustrated in Fig. 5B, C, some footsteps of
CFA mice indeed turned out to be smaller and of slower time
course than those of control mice (control vs CFA: amplitude, z=
7.781, p < 0.001; half-width, z=−10.354, p < 0.001), which reflects
in the distributions of amplitude and half-width of the EM
signal underlying individual footsteps during steady locomotion
(15–30 cm/s). This is compatible with the likely consequence that
CFA mice tend to avoid pressing on their sore paw.
Down Syndrom (DS) is also associated with motor impairment.

Upon visual inspection of locomotion in Ts65Dn (a model of DS) and
WT mice (n= 5 animals in each group), we noticed a disruption of
the typical spindle pattern characteristic of WT mice. As illustrated in
Fig. 5D–F, this was confirmed by the automatic quantification of the
correlation coefficients between the lower and upper envelopes of
the EM signal associated with steady locomotion (13–30 cm/s),
suggesting altered balance and movement coordination in DS (WT
vs DS, t(8)= 4.2212, p= 0.0029).

DISCUSSION
A novel device (the Phenotypix), made of an open-field platform
resting on highly sensitive piezoelectric pressure sensors, provided
access in a totally non-invasive manner to very fine components
of rat or mouse spontaneous behavior. Existing systems [14, 18]
based on similar principles, combined with spectral decomposi-
tion and automatic classification, are used to generate ethograms,
attributing each time bin of the recording to the most likely
ongoing behavior, such as walking, eating, drinking, seizures,
etc… But in contrast to these systems, the fine sensitivity and high
sampling rate of the Phenotypix, combined with highly efficient
antivibration system to minimize dampening and resonance, allow
to resolve individual movements such as individual breathing
cycles, heartbeats, or single footsteps during locomotion. Through
the study of various behavioral conditions and transgenic models,
we could identify and quantify novel behavioral components that
can be useful for the study of several fields of behavioral
neuroscience such as sleep, stress, or motor symptoms of
neurodevelopmental diseases and locomotion.
Although existing devices were shown to have good perfor-

mance for the detection of various kinds of self-grooming
behavior [14, 18], they are not used, to our knowledge, for the
quantification of the frequency and of the strength/momentum or
amplitude of individual self-grooming body movements. The
observation of increased amplitude and frequency of the EM
signal underlying body movement in self-grooming of the back
and belly in Fmr1-KO mice is an interesting complement to recent
studies pointing at fine alterations in self-grooming behavior in
these mice under stressful conditions [37–39], because it may help
better understand repetitive and self-injury behavior in FXS/ASD
patients [30, 32, 40, 41].
The direct and non-invasive evaluation of breathing and heart

rate may prove useful for the study of sleep apneas, a pathological

condition we still poorly understand. A previous report [13]
described the use of piezo sensors to detect breathing move-
ments and heartbeats of a mouse placed on a small platform (7 ×
13 cm). Our system reached comparable sensitivity and resolution
with dimensions more compatible with the study of spontaneous
behavior for mice and rats. Although the dimensions of the system
described here are 45 × 35 cm, it can be extended to larger
environments by the apposition of several platforms, providing a
multi-compartment environment best suited to the expression of
complex behavior of both rats and mice. Breathing and heartbeat
are vital parameters, but also strongly related to emotions, an
aspect of behavior difficult to identify in animal studies. Anxiety is
classically evaluated as the avoidance of situations of innate
aversion such as exposed or bright areas (e.g. center of an open
field, open arms of a maze) [42]. Fear on the other hand, a more
acute and stronger behavioral reaction to perceived threat, is
classically quantified as freezing immobility in rat and mouse
studies. From our results, we propose high-frequency (80–120 Hz)
shaking as a complementary index of fear in the mouse, expressed
during exposition to a fearful situation such as a novel
environment, the presence of a predator or a context previously
associated with fear conditioning.
Our device also allowed the detection of abnormalities in the

execution of locomotion, a fundamental motor function. While a
number of systems are available to measure the spatio-temporal
organization of gait, analyzing the sequence of positions of the
various limbs during locomotion [3, 4, 9–11, 43], the Phenotypix
allowed to reveal subtle alterations in the pressure signature of
individual footsteps. This compound output is the result of
complex interactions, that we can not yet dissociate, between the
muscular strengths and the coordination of the individual limbs
involved in each footstep. Nevertheless, we could access the time
course of the momentum that corresponds to individual footsteps,
and identify its reduced amplitude and slower time course in
limping mice. Moreover, global analysis of the dynamics of
successive footsteps revealed that mouse locomotion is typically
organized as series of 5–10 footsteps of increasing and then
decreasing amplitude, a pattern that was disrupted in a mouse
model of Down Syndrome. Our system therefore allowed to detect
alterations of locomotion in different mouse models, suggesting
access to novel criteria for gait analysis that may shed new light in
the understanding of various forms of ataxia.
Compared to existing approaches used in behavioral studies,

the specificities of the Phenotypix present some advantages and
limitations, guiding its fields of application. The main thing about
the Phenotypix is to be at the same time global and very sensitive.
This is advantageous to detect fine components potentially
overlooked by other approaches (e.g. shaking, momentum), but
a limitation when it comes to underpin the specific behavioral
factor responsible for the identified EM-signal (e.g. to distinguish
the relative contributions of movement amplitude, speed, or
strength in the EM signature of grooming). The global nature of
the signal can also be a disadvantage in applications that require
uninterrupted monitoring of a specific behavioral component.
For example, the Phenotypix allows to detect heartbeat and
breathing in a majority of animals, but only during some periods
of immobility, and alternative methods such as ECG/EMG or
nasally implanted thermocouples [44] may thus be preferred for
uninterrupted monitoring, although these approaches also have
their own disadvantages (e.g. to be invasive). Overall, rather than
an alternative to video approaches, EM signals might prove very
helpful as a complement to image processing algorithms by
bringing complementary non-visual information to feed machine
learning algorithms, which progress at tremendous pace. It is thus
very likely that the combination of EM signal and video
monitoring, as provided in the Phenotypix system, should
considerably improve the performance in building automated
ethograms in the future.
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