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A nonhuman primate model of human non-suicidal self-injury:
serotonin-transporter genotype-mediated typologies
Elizabeth K. Wood 1, Ryno Kruger1, Jaclyn P. Day1, Stephen M. Day2, Jacob N. Hunter3, Leslie Neville3, Stephen G. Lindell4,5,
Christina S. Barr4,5, Melanie L. Schwandt5, David Goldman 5,6, Stephen J. Suomi7, James C. Harris8 and J. Dee Higley1

While non-suicidal self-injury (NSSI) occurs in the general population at a surprisingly high rate, with higher rates among certain
clinical populations, its etiology is not well-understood. Consequently, the DSM-5 lists NSSI as requiring further research. This study
utilizes a translational model of naturally-occurring NSSI to assess the role of early parental neglect and variation in the serotonin
transporter genotype (5-HTT) in the etiology of NSSI. Subjects (N= 161) were rhesus macaques (Macaca mulatta) reared in one of
three conditions (mother-reared (MR), peer-reared (PR), or surrogate peer-reared (SPR)), and classified as NSSI (n= 18) or non-NSSI
(n= 143). Subjects were genotyped for 5-HTT and their behaviors were recorded during an ecologically-meaningful, stress-evoking,
intruder paradigm. Two weeks prior to testing, blood samples were obtained and assayed for plasma cortisol and
adrenocorticotropic hormone (ACTH) concentrations. NSSI subjects were more likely to be SPR, paralleling human studies showing
that individuals that exhibit NSSI tend to have experienced abuse or neglect early in life. Results also indicated that variation in the
5-HTT genotype differentiated the NSSI subjects. NSSI subjects that were homozygous for the L allele exhibited high plasma ACTH
and high rates of stress-induced stereotypies; whereas NSSI subjects with the s allele exhibited impulsive behaviors, including
frequently approaching the potentially dangerous intruder, high rates of aggressive vocal threats, and more activity. These results
suggest that there may be different 5-HTT genotype-mediated NSSI typologies and that both early experiences and variation in the
5-HTT genotype may be important factors in understanding the etiology of NSSI.
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INTRODUCTION
Non-suicidal self-injury (NSSI) is a cluster of behaviors that involve
the infliction of non-lethal harm to oneself [1]. NSSI tends to co-
occur with certain clinical diagnoses [2, 3] and may escalate to
suicidal ideation [4] and attempts [5]. The etiology of NSSI is not well
understood and the DSM-5 lists it as requiring further study [6].
One of the most frequently cited risk factors for NSSI is aberrant

early experiences, including abuse or neglect [7, 8]. The majority of
those that experience early maltreatment, however, do not go on
to exhibit NSSI [9]. Thus, elucidating why NSSI occurs in some
individuals and not in others is an important step toward
understanding its etiology.
At a more proximal level, some posit that NSSI is an aberrant

means of reducing arousal [10], and studies suggest that self-
injury brings temporary relief through tension and anxiety
reduction [11]. Other studies show that individuals with NSSI
tend to be more impulsive when compared to their non-NSSI
peers [11, 12]. While impulsivity appears to be an important factor
in humans with NSSI, researchers have generally not found a
relationship between temperamental impulsivity and self-injury in
nonhuman primates [13], although one study suggests that
deficits in extinction learning among self-injuring monkeys
evinces impulse-control deficits [14].

Given the role of anxiety and impulsivity in NSSI [15, 16], the
present study investigates the role of the serotonin transporter
genotype (5-HTT) in naturally-occurring NSSI. The 5-HTT genotype
is a known predictor of a variety of stress- and impulse-control-
mediated psychopathological outcomes in humans [17, 18] and
nonhuman primates [19, 20]. Studies show that individuals
possessing the short (s) allele often exhibit phenotypic suscept-
ibility to stress and anxiety [21] and low levels of central serotonin
are associated with anxious and impulsive behaviors [22, 23].
Studies in humans [24, 25] and nonhuman primates [26, 27] show
that some self-injuring individuals respond to medications that
modulate the serotonin system. Such findings indicate that
inherent variation in the serotonin system may play a role in the
etiology of NSSI for some. Others, however, do not respond to
serotonin-related pharmacological strategies, suggesting a com-
plex relationship between central serotonin and NSSI and that
other systems are involved.
Anxiolytics reduce the rates of self-injury in some human

populations, particularly those with intellectual disabilities [28]. In
nonhuman primates, one study showed that benzodiazepines
reduced rates of self-injury in some, but increased self-injury in
others [29], with benzodiazepine-responders spending more
time in a single housing and receiving more minor veterinary
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procedures. Another study in nonhuman primates shows that
anxiogenic drugs increase the frequency of self-injury in some
subjects, which the authors suggest is evidence of a dysregulated
GABA system, perhaps as a consequence of GABA receptor
genotype variation [30]. As anxiolytic drugs tend to reduce the
activation of the hypo-thalamic-pituitary-adrenal (HPA) axis during
stressful events [31], some suggest that NSSI is a self-soothing
mechanism [32]. As further evidence of this, studies show that self-
biting lowers the heart rate among self-injuring nonhuman
primates [13] and that, for humans with a history of self-injury,
imagining self-cutting leads to heart rate reductions [33]. Never-
theless, many do not respond to benzodiazepines, and in some
individuals with NSSI, rates of self-injury may even increase
following benzodiazepine administration [34].
There are limitations to studying NSSI in human populations.

For example, research in humans tends to rely on retrospective
memories and self-reports of the frequency of NSSI (for example,
see [35]), which may be subject to underreporting and recall
biases, and in humans, early life histories cannot be controlled.
Rhesus monkey (Macaca mulatta) models provide an alternative
because the frequency and severity of self-injury can be directly
observed, and early rearing conditions can be closely-controlled.
Furthermore, they possess marked genetic similarities to humans
[36], including an orthologous serotonin transporter genotype
[37]. They also show a high degree of similarity in the central
nervous system (CNS) and the HPA axis [38]. Like humans, NSSI
occurs naturally in the rhesus monkey. Rhesus monkeys engage in
self-injury (~14–25% in captive settings; often termed SIB),
typically in the form of self-biting [39], and rates are comparable
to the percentages of humans that engage in NSSI [40]. While
suicide has not been identified in rhesus monkeys, because this
paper is intended to model human NSSI, the term NSSI is used to
refer to self-injurious behavior in rhesus monkeys. As in humans,
studies attribute NSSI in nonhuman primates to early parental
neglect and limited social interactions [39, 41, 42]. Studies show
that early maternal absence and limited social interactions not
only increases the risk for NSSI but leads to CNS aberrations,
including a dysregulated serotonin system [43] and HPA axis
functioning [44, 45]. These factors make a rhesus monkey model
of NSSI ideally suited for studying the etiology of NSSI.
The purpose of the present study is twofold: (1) to investigate

the relationship between early parental neglect and NSSI status
and (2) to investigate the role of 5-HTT genotype variation in the
biobehavioral response to an ecologically meaningful stimulus
among subjects with NSSI.

MATERIALS AND METHODS
Subjects
Subjects (N= 161) were rhesus monkeys (100 females, 61 males;
Mage= 4.67 ± 0.19 years) tested at the National Institute of Health
Animal Center between 2002 and 2003. Subjects were part of a
larger research program designed to study variables associated
with variation in alcohol intake (cf. [46, 47]). Of the 161 subjects in
this study, n= 18 subjects (10 females, 8 males) were identified by
direct observation as engaging in NSSI in the form of self-biting on
one or more occasions, while the remaining n= 143 subjects were
not observed to self-bite.
As infants, subjects were reared in one of three different rearing

conditions (n= 75) mother-reared (MR), n= 37 peer-reared (PR),
n= 49 surrogate-peer-reared (SPR) (see [45]). Briefly, the MR
animals were reared by their mothers in social settings (with 7–10
adult females, 1–2 adult males, and other similarly-aged infants).
The PR animals were separated from their mothers following birth
and hand-reared in the nursery for the first 30 days of life and
were thereafter housed with 2–3 same-aged peers. The SPR
animals were reared in a nursery for the first months of life with an
inanimate surrogate and access to 2–3 same-aged, similarly-reared

peers for 2 h/day, 5 days/week. When subjects from each
condition were ~7 months old, each cohort was permanently
relocated into a larger social group of peers, receiving identical
treatment until they were 3 years old, when the males and females
were separated into separate groups of 8–12 monkeys so that
breeding could be controlled. They remained in their respective
isosexual groups for the present study. Rhesus monkeys live in
troops that are governed by strict social dominance hierarchies.
At the time of the study, dominance data was available for n= 135
of the subjects. Of these, n= 35 were high-ranking non-NSSI, n=
45 were middle-ranking non-NSSI, and n= 40 were low-ranking
non-NSSI subjects. There were n= 7 high-ranking NSSI, n= 3
middle-ranking NSSI, and n= 5 low-ranking NSSI subjects.
Protocols for the use of experimental animals were approved by
the Institutional Animal Care and Use Committee of the National
Institute of Alcohol Abuse and Alcoholism.

Intruder challenge test
When subjects were ~4 years old, they underwent a slightly-
modified version of the standardized intruder challenge test, a
stress-inducing experimental paradigm assessing the response to
the territorial challenge of a same-age and same-sex unfamiliar
monkey (the intruder), allowing researchers to measure stress and
impulsivity in a standardized fashion while controlling for age and
sex [48, 49]. Pilot testing indicated that it was difficult to maintain
experimental control and accurately code the response of subjects
to the intruder when the whole homecage group was tested at
once. Thus, three same-age test subjects, living together in the
same isosexual social group, were randomly selected and isolated
from the larger group into the outdoor portion (264CM ×
300CM × 244CM) of their homecage enclosure. None of the trios
were comprised of more than one NSSI subject and the rearing
condition of each the members of each trio was randomly
distributed. Because the subjects from each homecage were all
the same age and sex, the unfamiliar intruder could be matched
for age, sex, and relative body size.
The intruder was separated from their social group and

acclimated to a holding cage with an open mesh side (76CM ×
63CM × 91CM) for a period of 30 min. Following segregation into
the outdoor area of their living quarters, the test subjects were
acclimated for a period of 10 min. The intruder holding cage was
rolled directly in front of the outdoor portion of the test subjects’
homecage enclosures, with the open mesh side facing into the
enclosure. Test subjects could see, approach, and interact with
the unfamiliar intruder through the mesh of the enclosure and
transfer cage, limited touch was possible, but full contact was
prevented to avoid injury (no animals were injured during the
test). Each of the three test subjects’ behaviors was recorded by
separate observers for 30 min using handheld computers
equipped with Observer™ software (Noldus, Leesburg, Virginia).
All observers were trained by senior authors (JDH) and (SGL),
each of whom had 10+ years of experience with the scoring
system and achieved interobserver reliability (r > 0.85) using
regression and an established criterion of deviating less than 10%
on any behavior. Raters were blind to subjects’ genotype and
NSSI status at the time of data collection. The recorded behaviors
were based on a behavioral ethogram developed and used
extensively by the senior author’s laboratory (see Table 1 for a
detailed ethogram).

Hormone sampling and genotyping
Two weeks prior to the intruder challenge test, 3–4ml of blood
was obtained using EDTA coated vacutainers and a 22-g needle to
assess levels of plasma cortisol and adrenocorticotropic hormone
(ACTH). All subjects were captured and injected with ketamine
anesthesia (15 mg/kg, intramuscular) within 8 min of entering
their homecage, and samples were obtained within 5 min of
injection. Samples were placed on wet ice and centrifuged at 4 °C
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for 20 min, after which plasma was aliquoted and immediately
frozen in liquid nitrogen. Samples were stored at −70 °C until they
were assayed for concentrations of plasma cortisol and ACTH.
A subset of subjects (n= 143) was genotyped for 5-HTT.

Genotyping procedures have been described in detail elsewhere
(see [50]). Briefly, DNA was isolated from whole blood collected in
infancy from the femoral vein after subjects were sedated (ketamine
anesthesia, 15mg/kg, intramuscular). The short (s) (398-bp) and long
(L) (419-bp) alleles of the rh5-HTTLPR were identified by direct
visualization following ethidium-bromide staining (n= 100 animals
(47 MR, 23 PR, and 30 SPR) were homozygous for the L allele, n= 40
(26 MR, 4 PR, and 10 SPR) were heterozygous, n= 3 (2 MR and
1 SPR) were homozygous for the s allele). Preliminary analyses
showed no difference between the heterozygotes and subjects
homozygous for the s allele on the variables of interest. Therefore,
subjects that were homozygous for the s allele were combined with
the heterozygotes, as has been done in other studies [51]. Genotype
frequency did not deviate from Hardy–Weinberg equilibrium (x2(2,
N= 143)= 0.19, p= 0.66). See Table 2 for the distribution of the
genotypes.

Data analysis
Preliminary t-tests showed no difference between the time to
capture or time to obtain blood samples for NSSI and non-NSSI
subjects (t(155)=−0.71, p= 0.48) or for LL subjects or subjects
with an s allele (t(137)=−0.76, p= 0.45). With the exception of
cortisol, preliminary ANOVAs showed no effects of sex on variables
of interest (p > 0.05), so sex was excluded from further analyses. A
preliminary chi-square (x2) test of independence showed no
difference between NSSI and non-NSSI subjects in social
dominance rank x2(N= 135, df= 2)= 2.46, (p= 0.29).
To protect against inflating the Type I error rate, a two-way

MANOVA was performed, with 5-HTT genotype and NSSI status as
independent variables and plasma cortisol and ACTH and each of
the nine behaviors as dependent variables. Then, follow-up
ANOVAs were conducted, with 5-HTT genotype and NSSI status
as independent variables and plasma cortisol or ACTH

concentrations or each of the observed behaviors as the
dependent variables. All analyses were conducted in SPSS,
version 26.

RESULTS
Rearing condition
Results from the x2 test showed that there was a significant
relationship between NSSI status and early rearing condition (x2(2,
N= 161)= 26.79, p= 0.00001), with SPR subjects more likely to
exhibit NSSI than the MR or PR subjects (see Table 3).

Two-way MANOVA
Results of the MANOVA showed a statistically significant effect of
5-HTT genotype (F(11,94)= 3.07, p= 0.001, Wilks’ Λ= 0.74, ηp

2=
0.26) and a statistically significant effect of NSSI status (F(11,94)=
2.52, p= 0.008, Wilks’ Λ= 0.77, ηp

2= 0.123). There was also a
statistically significant 5-HTT-genotype-by-NSSI-status interaction
(F(11,94)= 2.93, p= 0.004, Wilks’ Λ= 0.75, ηp

2= 0.26).

Follow-up ANOVAs
Plasma ACTH and cortisol concentrations. There was a significant
main effect of 5-HTT genotype on ACTH concentrations (F(1,121)=
4.25, p= 0.04), with homozygous LL subjects exhibiting higher ACTH
concentrations (M= 69.70 ± 43.26 pmol/mL) when compared to
subjects with an s allele (M= 63.84 ± 33.52 pmol/mL).
There was also a significant 5-HTT-genotype-by-NSSI-status

interaction on ACTH concentrations (F(1,11)= 4.10, p= 0.04), with
homozygous LL/NSSI subjects exhibiting the highest ACTH
concentrations (M= 97.95 ± 49.63 pmol/mL), when compared to
NSSI subjects with an s allele (M= 44.38 ± 48.30 pmol/mL), or to
LL/non-NSSI subjects (M= 67.01 ± 41.95 pmol/mL) or to subjects
with an s allele (M= 66.52 ± 31.18 pmol/mL) (see Fig. 1).

Table 1. Intruder challenge behavioral ethogram.

Behavior Description

Aggression The focal subject gives/receives aggression to/from the intruder/cagemates. Contact aggression (e.g., bites, slaps)
and non-contact aggression (e.g., threats, lunges) is recorded.

Latency to approach the intruder Time from the start of the test until the focal subject first enters proximity (1 m) to the intruder.

Approach intruder The number of times the focal subject enters proximity (1 m) to the intruder.

Activity The focal subject moves across the substrate (e.g., walking, running, swinging across the cage, etc.).

Environmental exploration The focal subject engages in the active manual, oral, or pedal examination, exploration, or manipulation of the
environment.

Social contact The focal subject is within arm’s reach of the intruder/cagemates.

Behavioral withdrawal The focal subject remains motionless and does not engage in social interaction, activity, or environmental
exploration.

Stereotypy The focal subject engages in repetitive, non-adaptive, rhythmic movement (e.g., pacing, flipping, saluting).

Threat vocalizations The focal subject emits aggressive barks.

Behaviors were scored as duration (s), with the exception of aggression, approach intruder, and threat vocalizations, which were scored as frequencies.

Table 2. Frequency of genotypes by NSSI status.

LL LS/ss

NSSI 9 4

Non-NSSI 91 39

Table 3. Rearing condition of NSSI and non-NSSI subjects.

Mother-
reared (MR)

Peer-reared (PR) Surrogate peer-
reared (SPR)

NSSI 2 1 15

Non-
NSSI

73 36 34

NSSI subjects were more likely to be surrogate peer-reared (p= 0.00001).
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There was a significant sex-by-NSSI-status interaction for both
plasma cortisol (F(1,144)= 7.63, p= 0.006) and ACTH (F(1,124)=
4.09, p= 0.04), with females that exhibited NSSI exhibiting higher
cortisol and ACTH concentrations, when compared to NSSI males
and non-NSSI subjects (cortisol: NSSI females: M= 26.00 ± 8.33
pmol/mL, NSSI males: M= 18.93 ± 4.56 pmol/mL; non-NSSI
females: M= 24.22 ± 6.87 pmol/mL, non-NSSI males: M= 21.93 ±
6.31 pmol/mL; ACTH: NSSI females: M= 82.02 ± 59.23 pmol/mL,
NSSI males: M= 50.52 ± 25.96 pmol/mL; non-NSSI females: M=
66.79 ± 40.86 pmol/mL, non-NSSI males: M= 54.40 ± 16.75 pmol/
mL). There were no other cortisol effects.

Impulsivity
There was a significant main effect of 5-HTT genotype on the
frequency of approaching the intruder (F(1,139)= 13.17, p <
0.0001), with subjects with an s allele approaching the intruder
more often (M= 21.65 ± 16.80 approaches) when compared to
homozygous LL subjects (M= 15.43 ± 14.23 approaches).
There was a statistically significant main effect of NSSI status on

the frequency of approaching the intruder (F(1,139)= 6.18, p=
0.01), with NSSI subjects exhibiting a higher frequency of
approaching the intruder (M= 23.23 ± 22.69 approaches) when
compared to non-NSSI subjects (M= 16.71 ± 14.30 approaches).
There was also a significant 5-HTT-genotype-by-NSSI-status

interaction on the frequency of approaching the intruder
(F(1,139)= 7.84, p= 0.006), with NSSI subjects with an s allele
approaching the intruder three times more often (M= 43.75 ±
25.97 approaches), when compared to homozygous LL/NSSI
subjects (M= 14.11 ± 14.67 approaches), or the LL/non-NSSI
subjects (M= 15.56 ± 14.26 approaches) or to subjects with an s
allele (M= 19.38 ± 14.22 approaches) (see Fig. 2a).

Activity
There was a significant main effect of 5-HTT genotype on time
spent active (F(1,139)= 17.27, p < 0.0001), with subjects with an s
allele spending more time active (M= 362.63 ± 257.52 s) when
compared to homozygous LL subjects (M= 263.94 ± 200.17 s).
There was also a significant main effect of NSSI status on time

spent active (F(1,139)= 8.33, p= 0.005), with NSSI subjects
spending more time active (M= 403.30 ± 311.63 s) when com-
pared to non-NSSI subjects (M= 282.65 ± 210.34 s).
There was also a significant 5-HTT-genotype-by-NSSI-status

interaction on the seconds spent active (F(1,139)= 7.98,

p= 0.005), with NSSI subjects with an s allele spending more
time active (M= 708.30 ± 288.37 s), when compared to homo-
zygous LL/NSSI subjects (M= 267.74 ± 217.50 s), or to LL/non-NSSI
subjects (M= 263.57 ± 199.67 s) or to subjects with an s allele
(M= 327.18 ± 229.92 s) (see Fig. 2b).

Stereotypic behavior
There was a significant 5-HTT-genotype-by-NSSI-status interaction
on seconds spent in stereotypic behavior (F(1,139)= 5.01, p=
0.03), with homozygous LL NSSI subjects exhibiting more time in
of stereotypic behaviors (M= 280.84 ± 444.11 s), when compared
to NSSI subjects with an s allele (M= 20.95 ± 24.59 s) or to LL/non-
NSSI subjects (M= 39.16 ± 190.86 s) or to subjects with an s allele
(M= 81.82 ± 200.19 s) (see Fig. 2c).

Threat vocalizations
There was a significant main effect of 5-HTT genotype on the
frequency of threat vocalizations (F(1,136)= 12.99, p < 0.0001),
with subjects with an s allele exhibiting more threats (M= 20.12 ±
34.81 threats) when compared to homozygous LL subjects (M=
15.03 ± 36.08 threats).
There was also a significant main effect of NSSI status on the

frequency of threat vocalizations (F(1,139)= 5.74, p= 0.02), with
NSSI subjects exhibiting more threats (M= 23.77 ± 41.83 threats)
when compared to non-NSSI subjects (M= 15.84 ± 35.09 threats).
There was a significant 5-HTT-genotype-by-NSSI-status interac-

tion on threat frequency (F(1,139)= 11.55, p= 0.001), with NSSI
subjects with an s allele exhibiting the most threat vocalizations
(M= 67.25 ± 57.57 threats), when compared to homozygous
LL/NSSI subjects (M= 4.44 ± 3.97 threats) or to LL/non-NSSI
subjects (M= 16.08 ± 37.66 threats) or to subjects with an s allele
(M= 15.28 ± 28.64 threats) (see Fig. 2d).
There were no significant relationships found between NSSI

status or 5-HTT genotype and aggression, latency to approach the
intruder, environmental exploration, social contact with conspe-
cifics, or behavioral withdrawal (p > 0.05).

DISCUSSION
Results showed that the majority of NSSI subjects experienced
limited social experience (83% of NSSI subjects were SPR). To the
extent that these limited social experiences are comparabl to
early parental neglect in humans, these findings are consistent
with studies showing that aberrant early experiences, including
child abuse and neglect, are risk factors for NSSI in human [52]
and nonhuman primates [13, 39, 41]. The results also showed
evidence for two 5-HTT genotype-mediated typological variations
in the stress-response of individuals that engage in NSSI.
Homozygous LL subjects showed tendencies for overactive HPA
axes and hyper-responsiveness to stress, as evidenced by high
ACTH concentrations and stereotypies; whereas subjects with an
s allele showed evidence of impulse control deficits, exhibiting
longer overall activity and high rates of aggressive threat
vocalizations and more instances of approaching the unfamiliar,
potentially dangerous, intruder.
Studies show SPR subjects tend to have a variety of behavioral

pathologies, such as rocking, stereotypies, and self-biting [13, 42].
One interpretation of these results is that SPR subjects may
engage in NSSI as a maladaptive self-soothing mechanism. This
interpretation may not be complete, however, as 34 of the 49 SPR
subjects did not engage in NSSI, indicating that factors other than
early neglect likely contribute to the etiology of NSSI. It is of note,
that the PR subjects were no more likely to exhibit NSSI than the
MR subjects, replicating an earlier finding [42]. While both PR and
SPR subjects were deprived of maternal care, PR subjects had
continual social interactions with their agemates, whereas SPR
subjects had only limited social interactions. Studies show that
such limited interactions reduce the ability of SPR subjects to

Fig. 1 Effect of 5-HTT Genotype by NSSI Interaction on ACTH
Concentrations. There was a significant 5-HTT-genotype-by-NSSI-
status interaction, with homozygous NSSI subjects exhibiting the
highest ACTH concentrations (F(1,11)= 4.10, p= 0.04). Black bars
indicate homozygous subjects; white bars indicate subjects with an
s allele.
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develop social competence when compared to PR and MR
subjects [53]. Given these differences, NSSI may develop as a
consequence of limited social interactions, although this explana-
tion is speculative. What is clear, however, is that NSSI is not
simply the result of parental absence; nor is it the result of early
maltreatment, but rather is, at least in part, a consequence of
limited social experiences, an interpretation that parallels work in
humans showing that NSSI is more frequent in individuals who
experience peer-rejection and loneliness [54, 55].
There were two 5-HTT genotype-mediated responses to the

intruder challenge test among NSSI subjects. In the first,
homozygous LL/NSSI subjects exhibited high rates of stereo-
typies. Stereotypies are non-adaptive, repetitive behaviors [56],
tending to occur among subjects that experienced early
maternal deprivation [57]. It is of note that the homozygous
LL/NSSI subjects spent 13 times more time in stereotypies than
subjects with an s allele, suggesting a trait-like maladaptive
response to stress. For homozygous LL/NSSI subjects, one
cannot rule out the possibility that NSSI is an extension of such
stereotypies. Homozygous LL/NSSI subjects, however, exhibited
significantly higher ACTH concentrations, when compared to
NSSI subjects with an s allele. While speculative, homozygous
LL/NSSI subjects may attempt to reduce arousal by engaging in
self-soothing techniques, like stereotypies and NSSI, an inter-
pretation corroborated by other work suggesting that NSSI
decreases arousal (i.e., decreases heart rate) in monkeys [13]
and humans [33].

In contrast, NSSI subjects with an s allele exhibited more
frequent approaches and more threat vocalizations directed
toward the unfamiliar intruder and more time in general activity.
Studies suggest that the s allele is associated with high rates of
impulsivity [58, 59]. In line with this, on average, NSSI subjects with
an s allele approached the intruder three times more often than
homozygous LL/NSSI subjects. Approaching an unfamiliar con-
specific in the context of the intruder challenge test is a high-risk
behavior and may indicate impaired impulse control. While CNS
serotonin activity is not reported in this manuscript, other studies
in nonhuman primates show that, on average, NSSI subjects
administered fluoxetine show reductions in rates of self-injury [60],
suggesting that the serotonin system may be involved in NSSI.
NSSI subjects with an s allele also exhibited lower ACTH
concentrations and less time in stereotypies than homozygous
LL/NSSI subjects, an indication that their NSSI was not driven by
anxiety or arousal. While speculative, these impulse control deficits
may lead to an inability to successfully inhibit NSSI tendencies, an
interpretation consistent with human research suggesting that
NSSI individuals tend to exhibit impulsivity [12].

CONCLUSIONS
Taken together, these 5-HTT genotype-mediated response typol-
ogies among the NSSI subjects suggest that some individuals with
NSSI may exhibit NSSI due to an inability to inhibit impulsive
behavior, while others may exhibit NSSI in an attempt to cope

Fig. 2 Effects of 5-HTT Genotype by NSSI Interaction on Stress-Induced Behaviors. a There was a significant 5-HTT-genotype-by-NSSI-status
interaction, with NSSI subjects with an s allele exhibiting the highest rates of approaching the intruder (F(1,139)= 13.17, p < 0.0001). b There
was a significant 5-HTT-genotype-by-NSSI-status interaction, with NSSI subjects with an s allele spending the most time active (F(1,139)= 7.98,
p= 0.005). c There was a significant 5-HTT-genotype-by-NSSI-status interaction, with homozygous NSSI subjects exhibiting the most time in
stereotypies (F(1,139)= 5.01, p= 0.03). d There was a significant 5-HTT-genotype-by-NSSI-status interaction, with NSSI subjects with an s allele
exhibiting the most threat vocalizations (F(1,139)= 11.55, p= 0.001). Black bars indicate homozygous subjects; white bars indicate subjects
with an s allele.
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with high levels of stress and anxiety. While other studies show
that a dysregulated serotonin system may play a role in the
etiology of NSSI [61], this study parses out important genotype-
mediated nuances that may better explain the differences
between subjects.
It is clear that early experiences are, in part, foundational in the

development of NSSI. The results of this study also suggest that
the proposed 5-HTT genotype-mediated typologies may be useful
in determining appropriate NSSI treatment modalities, and could
explain why some individuals that self-injure respond to
serotonin-specific treatments [24, 25], while others respond to
anxiolytics [28]. While this study has sample sizes comparable
to others investigating NSSI in nonhuman primates [14, 26, 29],
one limitation to the interpretation of these results is the small
number of NSSI subjects with the s allele, which tempers
somewhat the generalization of the findings. As such, this study
provides evidence for a promising area of future study. Future
larger-scale studies of self-injury in nonhuman primates should
attempt to replicate these results with a larger sample size of
subjects possessing an s allele. Nevertheless, these results are
compelling and suggest a novel way of dichotomizing human
populations with NSSI. While this study focuses on the 5-HTT
genotype, it is likely that other systems play a role in the etiology
of NSSI. For example, NSSI leads to the release of endogenous
opiates [62], and some studies show that blocking opioid release
reduces NSSI [63]. It would be of interest to investigate the
μ-opioid genotype in future studies.
An important step in providing better treatment for individuals

with NSSI is understanding variables that are relevant to its
etiology. These findings provide evidence for factors that are
important in the development of NSSI. That SPR subjects were at
greatest risk for developing NSSI suggests that early life events, in
particular limited social experiences, are an important underlying
risk factor in the development of NSSI. The results of this study
also suggest that there may be different NSSI typologies,
modulated by 5-HTT genotype variation. To the extent that these
results generalize to humans, they suggest that 5-HTT genotype
variation may play an important role in determining which NSSI
treatment modalities may be most effective.
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