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Genome-wide DNA methylation differences in nucleus
accumbens of smokers vs. nonsmokers
Christina A. Markunas1, Stephen A. Semick2, Bryan C. Quach 1, Ran Tao2, Amy Deep-Soboslay2, Megan U. Carnes1, Laura J. Bierut 3,
Thomas M. Hyde2,4,5, Joel E. Kleinman2,4, Eric O. Johnson 1,6, Andrew E. Jaffe 2,4,7,8 and Dana B. Hancock 1

Numerous DNA methylation (DNAm) biomarkers of cigarette smoking have been identified in peripheral blood studies, but because
of tissue specificity, blood-based studies may not detect brain-specific smoking-related DNAm differences that may provide greater
insight as neurobiological indicators of smoking and its exposure effects. We report the first epigenome-wide association study
(EWAS) of smoking in human postmortem brain, focusing on nucleus accumbens (NAc) as a key brain region in developing and
reinforcing addiction. Illumina HumanMethylation EPIC array data from 221 decedents (120 European American [23% current
smokers], 101 African American [26% current smokers]) were analyzed. DNAm by smoking (current vs. nonsmoking) was tested
within each ancestry group using robust linear regression models adjusted for age, sex, cell-type proportion, DNAm-derived
negative control principal components (PCs), and genotype-derived PCs. The resulting ancestry-specific results were combined via
meta-analysis. We extended our NAc findings, using published smoking EWAS results in blood, to identify DNAm smoking effects
that are unique (tissue-specific) vs. shared between tissues (tissue-shared). We identified seven CpGs (false discovery rate < 0.05), of
which three CpGs are located near genes previously indicated with blood-based smoking DNAm biomarkers: ZIC1, ZCCHC24, and
PRKDC. The other four CpGs are novel for smoking-related DNAm changes: ABLIM3, APCDD1L, MTMR6, and CTCF. None of the seven
smoking-related CpGs in NAc are driven by genetic variants that share association signals with predisposing genetic risk variants for
smoking, suggesting that the DNAm changes reflect consequences of smoking. Our results provide the first evidence for smoking-
related DNAm changes in human NAc, highlighting CpGs that were undetected as peripheral biomarkers and may reflect brain-
specific responses to smoking exposure.
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INTRODUCTION
Cigarette smoking remains the leading cause of preventable
death, resulting in more than 7 million deaths annually worldwide
[1]. Despite cigarette smoking causing significant morbidity and
mortality and ~70% of adult smokers wanting to quit [2], 14% of
all U.S. adults remain current smokers [2].
Becoming a regular smoker involves multiple stages, with

evidence for heritability at each stage (37%–55% for smoking
initiation [3, 4] 46%–59% for smoking persistence [3], and up to 75%
for nicotine dependence [4]). Genome-wide association studies
(GWAS) have established nicotinic acetylcholine receptor and other
loci for varied smoking behaviors [5], and, most recently, implicated
>400 loci using Ns up to 1.2 million from the GWAS and Sequencing
Consortium of Alcohol and Nicotine use (GSCAN) [6]. Despite the
strong heritability of smoking behaviors and GWAS successes to
date, much remains unknown about the neurobiology underlying
the trajectory of smoking from predisposing genetic loci [6, 7] to
consequences of smoking exposure having downstream neurobio-
logical effects that reinforce smoking behaviors.

To better characterize the biological determinants and con-
sequences of smoking, gene regulation studies (e.g., epigenetic or
gene expression changes) in disease-relevant brain tissues are
needed. Previously, we reported differential RNA expression
(RNAexp) in postmortem dorsolateral prefrontal cortex samples
of smokers vs. non-smokers [8]. Here, we focus on nucleus
accumbens (NAc), another key tissue in addiction through its role
in cognitive processing of motivation, pleasure, and reward/
reinforcement learning [9, 10]. The NAc influences the dopamine
reward system in the binge/intoxication stage of the addiction
cycle [11]. Its disruption has been described as lying at the core of
drug addiction [12].
Numerous studies [13–15] have identified DNA methylation

(DNAm) changes related to cigarette smoking in peripheral blood.
However, because of the tissue specificity of gene regulation,
the neurobiological relevance of these changes is unknown. In
addition, these blood-based studies may miss biologically-relevant
smoking-related DNAm differences that are only detectable in
brain. Here, we report the first epigenome-wide association study
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(EWAS) of smoking in human postmortem brain samples, focusing
on NAc. Using RNAexp data from the same brain samples, we
evaluated smoking-related CpGs for association with nearby
RNAexp levels. We extended our DNAm findings to blood to
identify tissue-specific and tissue-shared smoking DNAm effects,
and applied a blood-derived smoking DNAm polyepigenetic
score [16] to our brain data to predict current vs. nonsmoking
status. Lastly, we used DNAm quantitative trait loci (mQTL)
mapping to tease apart genetically driven DNAm that underlie
predisposing factors for initiating smoking and developing
addiction (evidenced by QTL variants associated with smoking
phenotypes) vs. gene regulatory responses to smoking exposure
that may exert downstream neurobiological effects, reinforce
smoking behavior, and contribute to failed smoking cessation.
Both types of smoking-related DNAm changes are informative for
broadening our understanding of neurobiological pathways
leading to smoking and its consequences.

METHODS AND MATERIALS
Current smokers and nonsmokers among human postmortem
NAc samples
Postmortem human NAc tissues were obtained at autopsy as part of
the Lieber Institute for Brain Development (LIBD) Human Brain
Repository. See Supplementary Methods for details on the data
collection, cotinine measurement, and sample exclusion criteria.
Smoking status was determined based on both cotinine levels

in blood and/or brain samples and next-of-kin reporting to
minimize phenotype misclassification. Cases (current smokers)
were defined by one of the following: cotinine level >12 ng/mL
(threshold indicative of current active smoking rather than passive
smoking [17]); or cotinine level detected above the reporting limit,
but <12 ng/mL, in blood and/or brain tissues and a next-of-kin
report that corroborates current smoking. Controls (nonsmokers)
were defined by having both negative cotinine levels (below the
reporting limit) and a next-of-kin report of no current smoking.

DNAm data, quality control (QC), and pre-processing
Illumina HumanMethylation EPIC data were generated using DNA
extracted from NAc samples of 239 eligible decedents, as
described previously [18, 19]. Individual-level data are available
in the Gene Expression Omnibus (accession GSE147040) [20].
Data quality assessment and pre-processing were conducted
using the R package, minfi [21]. DNAm data processing included
stratified quantile normalization, and computing principal com-
ponents (PCs) of the negative control probe intensities to correct
for technical artifacts. Because cell type proportions can confound
DNAm associations with outcomes of interest, we included
neuronal cell type proportions to control for cellular heterogeneity
[22], estimated using the Houseman method [23], as covariates in
our statistical models. QC resulted in the exclusion of 18 samples
and 76,413 probes. See Supplementary Methods for more details
on the final analysis dataset (221 samples and 789,678 probes).
Sample characteristics are shown in Table 1.

Smoking EWAS meta-analysis in NAc
EWAS of β-values, representing the percentage of DNAm at
each CpG (ratio of methylated intensities relative to the total
intensity), on smoking case/control status as the outcome was
conducted separately by ancestry (European American [EA] and
African American [AA] samples). The ancestry-specific results
were combined by fixed-effects inverse variance-weighted meta-
analysis using METAL [24]. Details regarding the final model
selection are provided in Supplementary Methods. Robust linear
regression analyses were conducted using the R package, MASS
[25], to test the association between current vs. nonsmoking and
DNAm (β-value), while adjusting for age at death, sex, negative
control PCs, genotype PCs, and estimated proportion of

non-neuronal cells. We accounted for multiple testing by
controlling the false discovery rate (FDR) at 5% [26]. An overview
of our study design to extend and characterize our EWAS
findings is provided in Fig. 1.

Functional annotation of differential DNAm sites using RNAexp,
mQTL, and colocalization analyses
We generated corresponding RNA sequencing (RNA-seq)-based
expression profiles for each NAc sample that had DNAm data
(Table S1) and integrated these RNAexp data using a two-step
approach. First, we directly correlated the levels of DNAm and
nearby (+500 Kb) expressed genes across samples, regardless of
smoking status, to identify those CpGs associated with RNAexp
(and thus more likely to be functional). Next, we tested genes
with a significant RNAexp-DNAm association for differential
RNAexp by smoking in NAc, with and without adjustment
for nearby DNAm levels. Details regarding RNA-seq data
generation, processing, QC, RNAexp-DNAm association analyses,
and differential RNAexp by smoking analyses are provided in
Supplementary Methods.
We performed cis-mQTL analyses using Matrix eQTL [27] testing

the association of DNAm and genotypes of variants +500 Kb,
without accounting for smoking, and then expanding the model
using a joint 2 degrees-of-freedom (d.f.) test [28] accounting for
both variant main effects and variant-by-smoking status interac-
tion on DNAm. To test if any mQTL variants were also associated
with predisposing genetic risk of smoking-related traits (i.e., mQTL
and GWAS signals were shared), we performed a colocalization
analysis, applying the coloc [29] function (coloc.abf) to evaluate
whether the mQTL association signals were shared with the GWAS
signals for smoking initiation (i.e., ever vs. never smoking, most

Table 1. Description of LIBD NAc samples (N= 221)a.

Variable Case
(N= 53)

Control
(N= 168)

P valueb

Sex, N

Female 14 42 0.86

Male 39 126

Race, N

African American 26 75 0.57

European American 27 93

Age at death (years),

Mean+ SD 47.25 ± 12.5 45.75 ± 13.9 0.46

Range (minimum‒maximum) 18.8‒73.9 17.4‒71.8
Proportion of non-neuronal
cellsc, mean+ SD

0.76 ± 0.07 0.76 ± 0.07 0.56

Negative control PCsd, mean+ SD

PC1 −0.08 ± 8.31 −0.10 ± 11.0 0.99

PC2 0.06 ± 4.04 −0.002 ± 3.67 0.92

PC3 −0.06 ± 0.91 0.01 ± 2.02 0.73

PC4 −0.15 ± 0.86 0.04 ± 1.90 0.30

Frequencies and means ± standard deviations are presented for
categorical and continuous variables, respectively.
PC principal component, SD standard deviation, NA not applicable.
aFinal dataset after quality control and study-specific exclusions were
applied to the starting N= 239.
bP values are based on a Fisher’s exact test and t-test for categorical and
continuous variables, respectively.
cEstimated using NAc DNAm data following the Houseman method (refer
to Methods for details).
dGenerated using the negative control probes on the DNAm array (refer to
Methods for details).
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closely resembling the current smoker vs. nonsmoker phenotype
in LIBD) and cigarettes per day (most indicative of nicotine
dependence) from GSCAN [6]. See details in the Supplementary
Methods.

Comparison of smoking-related DNAm changes in NAc and blood
To investigate tissue-specific vs. -shared smoking-related DNAm
changes, we compared our EWAS meta-analysis results in
NAc (FDR < 0.05) to published results from the largest blood-
based EWAS meta-analysis of current vs. never smoking to date
(N= 15,907) [14]. We assessed the overlap between the NAc- and
blood-based smoking DNAm results at both the CpG- and gene-
level. Details regarding these comparisons are provided in
Supplementary Methods.

Application of a blood-based Smoking methylation PolyEpigenetic
Score (SmPEGS) in brain
We applied the blood-based SmPEGS [16] to our brain DNAm data
(Supplementary Methods). Logistic regression models were run
separately by ancestry and in the pooled sample to test the
association between the blood-derived SmPEGS and current vs.
nonsmoking in NAc, adjusting for the same covariates from our
brain EWAS analysis. To assess the ability of the SmPEGS to classify
smoking status in brain, we performed a receiver operating
characteristic (ROC) analysis using the R package, pROC [30].

RESULTS
Epigenome-wide association results by smoking in NAc
We identified seven CpGs that exceeded FDR < 0.05 in our cross-
ancestry EWAS meta-analysis (Fig. 2 and Table 2; Figs. S1 and S2).
Each CpG is located within or proximal to a unique gene locus
(Fig. S3). The difference in their mean percentages of DNAm in
smokers and nonsmokers ranged from 0.92% to 4.13%. Three of
the seven smoking-associated CpGs exhibited decreased DNAm
by smoking, with consistent directions of effect between EA and
AA ancestries (Table 2). Overall, smoking-related effect sizes were
small, and there was no evidence of systematically increased or
decreased DNAm by smoking (Fig. S1). More complete EWAS
results are provided in Table S2 (meta-analysis P < 0.05). Full
results are provided in Table S3.

Linking DNAm associations to RNAexp and mQTL variants in NAc
Using a two-step approach, we integrated DNAm data with
corresponding RNAexp data in the same NAc samples to identify
smoking-related CpGs associated with nearby RNAexp and genes
with differential RNAexp by smoking. We first focused on the
seven smoking-related CpGs in NAc, and tested for association
between DNAm levels and RNAexp of each gene within +500 Kb
(Table S4). We identified one long noncoding RNA (lncRNA) with
RNAexp levels that were significantly associated with DNAm levels

at cg08395748: RP11-297D21.4 (ENSG00000270049: antisense to
AGRP [Agouti related neuropeptide]; P= 1.54 × 10−4, gene start
site located 0.09 Mb upstream of the CpG). We next evaluated
RP11-297D21.4 for differential RNAexp by smoking and found no
evidence of association, regardless of controlling for nearby
DNAm levels at cg08395748 (without adjustment for DNAm: log2
fold change=−0.06, P= 0.16; with adjustment for DNAm: log2
fold change=−0.03, P= 0.60). Overall, these results provide
limited functional support for the smoking-related DNAm changes
in NAc.
To tease apart potential genetic effects on DNAm (i.e., variants

with colocalized mQTL and smoking phenotype associations
indicating predisposing risk factors for smoking) compared to
DNAm changes resulting from smoking exposure (i.e., lacking
mQTL variants, or having mQTL variants present but them not
being associated with smoking phenotypes), we performed cis-
mQTL analyses for each of the seven smoking-related CpGs. We
observed statistically significant mQTL variants (P < 2.2 × 10−6

based on correction for testing 22,625 variants) for one CpG: a
linkage disequilibrium block with the lead SNP rs10740507
(G allele) being associated with increased DNAm at cg09959332
(P= 2.83 × 10−19; Table S5); rs10740507 is also a significant cis-
eQTL in NAc and other tissues from the Genotype-Tissue
Expression (GTEx) project [31]. However, coloc results for testing
if both traits are associated and share a causal variant [29], found
no overlap between GSCAN (N= 1,232,091 for smoking initiation
GWAS, N= 337,334 for cigarettes per day GWAS) and mQTL
signals from each smoking-related CpG (posterior probability
<0.01). The cis-mQTL results (e.g., Table S5 for cg09959332) and
lack of colocalized mQTL and smoking GWAS signals were
consistent whether or not smoking was taken into account in the
QTL model.

Comparisons to infer tissue-specific and -shared smoking DNAm
effects
CpG-level: comparison of differentially methylated CpGs. We
assessed our NAc-identified CpGs in the largest reported
blood-based EWAS of smoking, conducted on the Illumina
450k array [14]; none of the five available smoking-related CpGs
were associated in blood (Table 3). The two other smoking-
related CpGs in NAc were captured on the EPIC array, but not
the 450 K array, and thus not tested in blood. Effect sizes for all
five available smoking-related CpGs in NAc were smaller in
blood than in brain, and the directions of effect were consistent
for three of the five CpGs. The mean percentages of DNAm in
blood and brain were similar.
We performed the reverse look-up of blood-based findings in

NAc. None of the 16,706 available smoking-related CpGs in
blood were associated in NAc (Table S6), and the effect sizes
were not correlated (r= 0.08). Overall, we found no evidence of
tissue-shared smoking-related DNAm changes at the CpG-level.

EWAS of smoking in NAc

(N=221)

Epigenome-wide FDR<0.05

Cis-expression 

quantitative trait DNAm 

(cis-eQTM) in NAc

Smoking-related CpGs 

in NAc vs. blood

CpG-level Gene-levelc

Blood-based SmPEGSa

Differential RNAexp by 

smoking of targeted 

genes in NAc

Bonferroni correction for 
N genes tested per CpG

EWAS of smoking in bloodb

(N=15,907)

Epigenome-
wide 

FDR<0.05Cis-methylation

quantitative trait (cis-

mQTL) variants in NAc

Colocalization with 

GWAS signals for 

smoking phenotypes

Bonferroni correction 
for N variants tested

Fig. 1 Overview of the study design. Dotted lines indicate previously published results. SmPEGS: Smoking methylation PolyEpigenetic Score.
aSugden et al. [16]. bJoehanes et al. [14]. cGenes proximal to differentially methylated CpGs.
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Gene-level: comparison of genes proximal to differentially methy-
lated CpGs. We annotated the seven smoking-related CpGs in
NAc to the nearest gene. Of these, three genes (ZIC1 [Zic family
member 1], ZCCHC24 [Zinc finger CCHC-type containing 24],
PRKDC [Protein kinase, DNA-activated, catalytic subunit]) were also
annotated as the nearest gene to a CpG showing differential
DNAm by smoking in blood (Tables 3 and S7). Among the three
overlapping genes (Fig. S3), ZIC1 was the only gene for which the
smoking-associated CpG in NAc fell within the gene body.
While the specific CpGs were not shared between tissues, their
directions of association were consistent between tissues for ZIC1
(higher DNAm levels among smokers) and ZCCHC24 (lower DNAm

levels among smokers), but not for PRKDC. Overall, our results
support both tissue-specific (ABLIM3 [Actin binding LIM protein
family member 3], APCDD1L [APC down-regulated 1 like], MTMR6
[Myotubularin related protein 6], and CTCF [CCCTC-binding factor])
and -shared (ZIC1, ZCCHC24, PRKDC) genes proximal to differen-
tially methylated CpG(s) by smoking.

Blood-based SmPEGS tests for discrimination of smoking status in
brain
We applied a blood-based SmPEGS [16] to our brain DNAm data
to predict smoking status (Table S8). The SmPEGS was associated
with smoking in the combined (OR= 1.78 [95% confidence

Table 2. Smoking-related CpGs in NAc at FDR < 0.05 in EWAS meta-analysis.

CpG Nearest gene EWAS meta-analysis (N=
221)

EA EWAS (N= 120) AA EWAS (N= 101)

Beta P valuea Beta P valuea Beta P valuea

cg18384794 ABLIM3 −0.014 6.25 × 10−9 −0.012 1.19 × 10−3 −0.016 9.58 × 10−7

cg17884843 ZIC1 0.016 6.05 × 10−8 0.011 1.67 × 10−2 0.019 4.04 × 10−7

cg05224975 APCDD1L 0.009 8.63 × 10−8 0.011 3.11 × 10−6 0.007 5.13 × 10−3

cg09959332 ZCCHC24 −0.041 1.95 × 10−7 −0.034 6.76 × 10−4 −0.053 4.17 × 10−5

cg11912754 PRKDC 0.016 2.81 × 10−7 0.007 0.12 0.024 1.17 × 10−8

cg13555116 MTMR6 −0.022 3.90 × 10−7 −0.026 2.40 × 10−6 −0.016 2.74 × 10−2

cg08395748 CTCF 0.010 4.01 × 10−7 0.013 7.45 × 10−7 0.006 0.05

EA European American, AA African American.
aUnadjusted P < 0.05 are indicated in bold font.

Fig. 2 EWAS meta-analysis in NAc of smokers (N= 53) vs. nonsmokers (N= 168). CpGs are shown according to their position on
chromosomes 1–22 (alternating red/blue) and plotted against their −log10 p values. The dotted horizontal line indicates genome-wide
significance based on FDR < 0.05. The genomic inflation factor (λ) was 1.05 for the meta-analysis and 1.01 and 0.98 for European American-
and African American-specific analyses, respectively.
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interval: 1.22, 2.59], P= 0.003) and EA (OR= 2.00 [1.12, 3.59], P=
0.02) samples. The association among AAs was non-significant but
consistent in direction (OR= 1.45 [0.79, 2.67], P= 0.24). The blood-
based SmPEGS provided limited discrimination between smokers
and nonsmokers in NAc with an area under the ROC curve
(AUC)= 0.62 (95% confidence interval: 0.54, 0.71) in the combined
sample and an AUC= 0.67 (0.55, 0.78) among EAs.

DISCUSSION
Our results strongly support tissue-specific smoking DNAm effects
at the CpG-level in blood vs. brain, with some support for tissue-
shared DNAm effects at the gene-level. Our study is the first to
report epigenome-wide DNAm changes by smoking in human
postmortem brains. Among the seven CpGs exceeding FDR < 0.05
in NAc, only cg08395748 was associated with nearby RNAexp
(RP11-297D21), but further evaluation indicated that RP11-297D21
was not differentially expressed by smoking. To investigate both
tissue-specific and -shared smoking DNAm effects, we extended
our findings to blood. None of the available NAc- or blood-
smoking-associated CpGs were associated with smoking in the
other tissue. However, three of the seven NAc-identified CpGs
were closest to genes that were also identified as proximal to
smoking-associated CpGs in the prior blood-based EWAS. Further,
we used cis-mQTL and colocalization analyses with well-powered
GWAS of smoking phenotypes to separate predisposing vs.
consequential dysregulation of smoking. We concluded that the
observed DNAm changes at all seven smoking-related CpGs were
likely consequences due to smoking exposure. These changes
may in turn influence downstream neurobiological pathways in
the NAc that reinforce smoking behaviors, contribute to failed
smoking cessation, and influence other health-related effects.
Three genes were proximal to smoking-related DNAm changes

in both blood and NAc: ZIC1, ZCCHC24, and PRKDC. While different
CpGs were implicated in NAc vs. blood, the directions of effect for
DNAm levels by smoking were consistent between tissues for ZIC1
and ZCCHC24. All genes have been previously related to smoking in
other contexts. Zic1 is a zinc finger transcription factor that plays a
role in early development and formation of the cerebellum [32]. All
five smoking-associated ZIC1 CpGs in blood and NAc (FDR < 0.05)
showed increased DNAm in current smokers. However, the opposite
direction of effect has been reported for sperm samples (N= 156):
decreased DNAm at ZIC1 in current smokers (P= 9.6 × 10−8) [33].
ZIC1 was also implicated in the smoking initiation GWAS from
GSCAN (gene-based P= 4.14 × 10−7) [6]. In our study, ZIC1 genetic
variation that predisposes to smoking initiation was not

colocalized with cis-mQTL-driven dysregulation, suggesting that
the ZIC1 locus is also vulnerable to DNAm changes due to
smoking exposure. Dysregulation of ZIC1 in brain has been
observed for cocaine, with ZIC1 downregulated in response to
repeated administration in mouse NAc (P= 3.7 × 10−7) [34]. These
multiple lines of evidence link the ZIC1 locus to both predisposing
and consequential effects of smoking, and possibly drug use more
broadly.
While little is known about the function of ZCCHC24, increased

DNAm at ZCCHC24 in newborn blood samples has been
associated with sustained maternal smoking during pregnancy
(P= 5.29 × 10−4) [15]. PRKDC encodes the DNA-dependent protein
kinase catalytic subunit and plays a key role in the DNA repair
pathway, non-homologous end-joining (NHEJ) [35]. Genetic
variants in NHEJ genes [36], including PRKDC [37], have been
previously associated with lung cancer, of which cigarette
smoking is a major risk factor.
We also report 4 genes with evidence of proximal differential

DNAm by smoking that is specific to NAc: (1) ABLIM3, (2) APCDD1L,
(3) MTMR6, and (4) CTCF. ABLIM3 is involved in axonal guidance
signaling and is downregulated in dopaminergic neurons in the
ventral tegmental area in relation to perinatal nicotine exposure in
rats [38]. Little is known about the function of APCDD1L, but it was
selected as part of two blood-based gene expression signatures
developed to classify smokers vs. nonsmokers [39]. While
APCDD1L was not annotated to any smoking-associated CpGs in
blood, the antisense non-coding RNA of APCDD1L (APCDD1L-AS1)
was identified (cg14546153: β= 0.003, P= 0.0004) [14]. MTMR6 is
a member of the myotubularin-related protein family of phos-
phatidylinositol 3-phosphatases and plays a key role in 3-
phosphoinositide lipid metabolism [40]. While MTMR6 dysregula-
tion in brain has not been linked to smoking or addiction
phenotypes, differential MTMR6 expression in brain has been
implicated in schizophrenia [41], which is highly comorbid and
genetically correlated with smoking [42]. CTCF, a well-known
transcriptional regulator, is thought to play a role in brain
development, regulation of neural genes [43], and response to
dopamine (a neurotransmitter involved in addiction and reward
pathways) [44].
Only tissue-specific effects were observed at the CpG-level. NAc-

based smoking-related CpGs were not identified in blood, and
blood-based smoking-related CpGs were not identified in NAc. For
example, cg05575921 within AHRR (Aryl-Hydrocarbon Receptor
Repressor) is a robustly replicated blood-based DNAm biomarker
for cigarette smoking, but was not associated with smoking in NAc
(meta-analysis P= 0.57; 0.19% difference in DNAm between

Table 3. Overlap between smoking-related CpGs in NAc and blood samples (FDR < 0.05).

CpG Chr Position Nearest gene NAc EWAS (N= 221) Blood EWASa (N= 15,907)

Beta P value Beta P value Gene-levelb

cg18384794 5 148509515 ABLIM3 −0.014 6.25 × 10−9 0.0009 0.36 No

cg17884843 3 147141132 ZIC1 0.016 6.05 × 10−8 −0.0006 0.59 Yes

cg05224975c 20 57049253 APCDD1L 0.009 8.63 × 10−8 NA NA Nod

cg09959332c 10 81224116 ZCCHC24 −0.041 1.95 × 10−7 NA NA Yes

cg11912754 8 48676898 PRKDC 0.016 2.81 × 10−7 0.0001 0.91 Yes

cg13555116 13 25862332 MTMR6 −0.022 3.90 × 10−7 −0.0014 0.23 No

cg08395748 16 67605701 CTCF 0.010 4.01 × 10−7 0.0004 0.52 No

NA not applicable.
aBlood-based smoking cross-ancestry EWAS meta-analysis results [14]. Blood-based targeted look-up via personal communication with Dr. Roby Joehanes, first
author of smoking EWAS.
bNearest gene (e.g., ABLIM3) associated with NAc-based smoking-related CpG (FDR < 0.05) is also associated with a smoking-related CpG (FDR < 0.05) in blood.
cEPIC probe not available on the Illumina 450 K DNAm array.
dAPCDD1L-AS1 was identified in the blood-based EWAS of smoking.

Genome-wide DNA methylation differences in nucleus accumbens of smokers. . .
CA Markunas et al.

558

Neuropsychopharmacology (2021) 46:554 – 560



smokers and nonsmokers). For comparison, cg05575921 showed an
18% difference in DNAm between smokers and never smokers in
blood samples (P= 4.5 × 10−26) [14]. While unlikely to fully account
for the lack of association in brain, the likely presence of former
smokers among our nonsmoker controls may reduce power to
detect DNAm changes at cg05575921, as cg05575921 is associated
with former vs. never smoking, although its effect is attenuated by
77.5% compared with current vs. never smokers [14].
To further extend blood-based findings, we applied a blood-

derived smoking DNAm polyepigenetic score to our brain data to
predict smoking status. We found that the SmPEGS provided
limited discrimination between smokers and nonsmokers in NAc
(AUC= 0.62 [0.54, 0.71]), indicating that many effects detected in
blood may not directly translate to strong effects in brain.
For comparison, AUCs of 0.81‒0.93 for never vs. current smoking
and 0.77‒0.78 for never vs. ever (current/former) smoking were
reported in blood-based samples [16].
While this study’s data provide a new resource to begin

investigating the neurobiological underpinnings of smoking
phenotypes, there are several limitations. The data (i.e., multi-
omic data in human postmortem brain with available smoking
data) are highly unique, but our sample size and thus statistical
power were limited, possibly impacting our ability to detect
smoking-related DNAm changes in brain and link those changes
with nearby RNAexp. The case and control definitions for cigarette
smoking were based on multiple data sources and corroboration
of board-certified psychiatrists, suggesting that phenotype mis-
classification was unlikely; any misclassification would be
expected to have identified cases as controls and biased the
results towards the null. The present study was designed as a
nested case-control sample selected from decedents with
postmortem NAc tissue available in the LIBD Human Brain
Repository with exclusion criteria for trauma, cancer, and other
brain-damaging conditions. We set additional exclusion criteria to
enable discovery of DNAm associations specifically with cigarette
smoking in late adolescents and adults and with minimal
confounding by co-morbid psychiatric diseases or alcohol/
substance use (i.e., no intoxication at time of death or next-of-
kin reporting of lifetime alcohol or substance use disorder). With
these criteria, the potential for ascertainment or other selection
bias cannot be excluded, given inherent differences associated
with smoking (for example, a greater portion of cases having died
of natural causes [90.6%], likely due to smoking’s widespread
detrimental effects, compared with controls [79.2%]). However,
applying the same exclusion criteria to cases and controls and
achieving similar distributions in age, sex, and ancestry distribu-
tions (Table 1) likely helped to mitigate potential selection biases
between the case/control groups.
There are currently no external NAc DNAm datasets for

replication of our novel findings, so we relied on internal
consistency between ancestral groups by focusing on meta-
analysis results, rather than ancestry-specific findings. We also
relied on a large-scale blood-based EWAS of smoking (N= 15,907)
[14] to compare CpG-smoking associations in NAc vs. blood;
ideally, these comparisons would be done in the same cohort, but
to our knowledge, no cohorts exist with genome-wide DNAm data
in NAc and blood tissues from decedents with known smoking
histories.
Our comparisons may have been affected by differences

between the NAc- and blood-based datasets. Statistical power
to detect blood-based findings in brain was more limited, but
there should be sufficient power to detect the NAc-based
findings from the blood-based EWAS [14]. Although different
Illumina DNAm arrays were used (450 K [blood] vs. EPIC [NAc]),
the more recently developed EPIC array targets over 90% of the
450 K CpG probes and both arrays use the same probe
chemistries and generally exhibit high levels of correlation
[45]. For the gene-level comparison between tissues, ‘target’

genes were defined based on physical proximity due to the lack
of available RNAseq and DNAm data in blood to conduct cis-
expression quantitative trait DNAm analyses, as we performed in
brain. As a result, we may miss true target genes and limit our
ability to define shared and unique smoking-related effects
between blood and brain. In addition, the reference data used to
derive estimates of cell-type proportions were based on Illumina
450 K data generated in dorsolateral prefrontal cortex brain
samples [21]. While we used cell type-discriminating CpGs that
overlapped with the EPIC array for cell-type proportion
estimates in NAc, there could be measurement error in the cell
type proportions arising from the different tissues. There could
be residual cell type differences that were unaccounted for in
our analysis that would result in false-positive associations.
Because we analyzed a mixture of cell subtypes concurrently, it
is possible that we may miss true smoking-related DNAm
changes that occur in only a specific cell subtype. Further,
measurement error in the DNAm data, if any, would be expected
to be nondifferential, given the randomization of cases and
controls across plates, and bias the results towards the null.
Nonetheless, our statistical model adjusted for PCs of the DNAm
negative control probes to control technical artifacts. Measure-
ment error in the other potential confounders included in our
model (age, sex, ancestry) were likely negligible. Finally, we are
unable to rule out unmeasured or residual confounding due to
other exposures or traits (e.g., former alcohol use [no decedent
was intoxicated at time of death]) or reduced power due
to smoking-related DNAm changes which persist in former
smokers.
Our study is the first to demonstrate smoking-related DNAm

changes in human brain and lays the foundation for future studies
to expand and extend our findings in brain. Our results highlight
CpGs, previously undetected as peripheral DNAm biomarkers of
smoking that may reflect brain-specific processes, and provide
support for tissue-shared genes proximal to smoking-related
DNAm changes, suggesting that the susceptibility of certain
epigenomic regions to smoking may be conserved between
tissues. By incorporating genetic data to differentiate smoking-
related DNAm changes that are genetically-driven (i.e., DNAm as a
mediator of genetic risk of smoking) vs. exposure-driven (i.e.,
DNAm changes as a consequence of exposure), we found that the
observed smoking-related DNAm changes at 7 CpGs most likely
reflect neurobiological processes related to smoke exposure.
Exposure-driven epigenetic associations, as we observed, may
have smaller effect sizes in bulk tissue, compared with cell type-
specific studies, and may not capture biologically meaningful
effects that accumulate over time and with repeated exposures
when measured cross-sectionally [46]. We expect that increasing
sample size and expanding the number of brain tissues and cell
types examined in future studies will identify additional DNAm
and RNAexp changes, expanding knowledge of both underlying
predisposition to smoking and consequences of smoking expo-
sure on the epigenome, and enable the investigation of ancestry-
specific effects.
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