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Prediction of short-term antidepressant response using
probabilistic graphical models with replication across multiple
drugs and treatment settings
Arjun P. Athreya1, Tanja Brückl2, Elisabeth B. Binder 2, A. John Rush 3,4,5, Joanna Biernacka 6, Mark A. Frye7, Drew Neavin8,
Michelle Skime7, Ditlev Monrad9, Ravishankar K. Iyer10, Taryn Mayes11, Madhukar Trivedi 11, Rickey E. Carter 12, Liewei Wang1,
Richard M. Weinshilboum1, Paul E. Croarkin 7 and William V. Bobo13

Heterogeneity in the clinical presentation of major depressive disorder and response to antidepressants limits clinicians’ ability to
accurately predict a specific patient’s eventual response to therapy. Validated depressive symptom profiles may be an important
tool for identifying poor outcomes early in the course of treatment. To derive these symptom profiles, we first examined data from
947 depressed subjects treated with selective serotonin reuptake inhibitors (SSRIs) to delineate the heterogeneity of antidepressant
response using probabilistic graphical models (PGMs). We then used unsupervised machine learning to identify specific depressive
symptoms and thresholds of improvement that were predictive of antidepressant response by 4 weeks for a patient to achieve
remission, response, or nonresponse by 8 weeks. Four depressive symptoms (depressed mood, guilt feelings and delusion, work
and activities and psychic anxiety) and specific thresholds of change in each at 4 weeks predicted eventual outcome at 8 weeks to
SSRI therapy with an average accuracy of 77% (p= 5.5E-08). The same four symptoms and prognostic thresholds derived from
patients treated with SSRIs correctly predicted outcomes in 72% (p= 1.25E-05) of 1996 patients treated with other antidepressants
in both inpatient and outpatient settings in independent publicly-available datasets. These predictive accuracies were higher than
the accuracy of 53% for predicting SSRI response achieved using approaches that (i) incorporated only baseline clinical and
sociodemographic factors, or (ii) used 4-week nonresponse status to predict likely outcomes at 8 weeks. The present findings
suggest that PGMs providing interpretable predictions have the potential to enhance clinical treatment of depression and reduce
the time burden associated with trials of ineffective antidepressants. Prospective trials examining this approach are forthcoming.

Neuropsychopharmacology (2021) 46:1272–1282; https://doi.org/10.1038/s41386-020-00943-x

INTRODUCTION
Major depressive disorder (MDD) is a complex disease comprising
several symptoms related to mood, capacity to derive pleasure,
physical status, and cognitive functioning [1]. Despite variable
efficacy rates [2], antidepressants are the most-commonly used
treatments for MDD. Therapeutic responses to antidepressants
can be reliably measured using validated rating scales (See
Fig. 1A), which can then be used as a guide for clinical decision
making [3, 4]. However, there are no validated quantitative
prognostic “symptom level” indicators that can be used to
operationalize decisions about continuing or changing treatment
based on the most-likely eventual treatment outcome. The high
variability of depressive symptom presentations (See Fig. 1B) and
clinical trajectories of MDD (See Fig. 1C) present formidable
challenges for clinician decision making [5]. As a consequence,
antidepressant treatment selection occurs on a “try-and-try-again”

basis, based on lack of perceived treatment benefit by patients
and clinicians [6]. Hence, there is a significant need to derive
accurate and quantitatively-based prognoses of eventual treat-
ment outcomes, given a set of measured changes in symptom
severity at an intermediate timepoint [7, 8], before therapeutic
trials are declared to be fully complete, usually after 8 weeks of
treatment [9–12].
Prior studies using STAR*D and other large datasets have

investigated whether early improvements in total depression
rating scale scores can be used to predict eventual treatment
nonresponse [13], which would enable a change in treatment.
These studies relied on the use of growth mixture models and
trajectory analyses [14–16] which do not provide easily inter-
pretable prognoses (prediction) of eventual treatment outcomes
using specific patterns of improvement in depressive symptoms at
intermediate treatment timepoints. These prior studies showed
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that, as would be expected, early response (i.e., >50% reduction in
total depression severity scores at 4 weeks) is prognostic of
response at 8 weeks, and a <20% reduction in total depression
severity at 4 weeks is prognostic of nonresponse at 8 weeks.
However, this observation accounts for variations in less than half
the patients across the studies, and in the remaining majority of
the patients, there is still significant heterogeneity in the 8-week
outcomes of patients who are nonresponders at 4 weeks. Hence,
the need for conditioning the likelihood of 8-week treatment
outcomes on early improvements in individual depressive
symptoms in conjunction with changes in total depression

severity is highlighted by the observation that nearly half of
nonresponders to antidepressant therapy (i.e., <50% reduction in
total depression severity scores) at 4 weeks are eventual
responders to therapy at 8 weeks [17].
Antidepressant response is probabilistic in nature (i.e., long-

itudinal variations in MDD severity and treatment outcomes vary
in patients who begin treatment with the same MDD severity).
Hence, we examined whether mathematical formulations such as
probabilistic graphical models (PGMs) [18] that allow for reasoning
under conditions of uncertainty, could thus be suitable methods
to derive interpretable prognoses of antidepressant response.

Fig. 1 Study overview. A Measurement-based psychiatry using validated rating scales such as the 17-item Hamilton Depression Rating Scale
(HDRS) to measure severity of depression symptoms. HDRS total score is sum of severity of individual HDRS item (depressive symptom).
B Heterogeneity of symptom severity in the training datasets (Mayo Clinic PGRN-AMPS and ISPC subjects) with HDRS total score of 25 at
baseline. C Heterogeneity in longitudinal variations of HDRS total score in Mayo Clinic PGRN-AMPS and ISPC subjects treated with citalopram/
escitalopram. D Proposed analyses workflow to build probabilistic graphical model (PGM) and derive individualized prognoses of treatment
outcomes at 8 weeks using changes in severity of focused set of depressive symptoms between baseline and after 4 weeks of antidepressant
treatment.
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Specifically, we used PGMs in conjunction with unsupervised
machine learning methods to derive interpretable and accurate
prognoses of antidepressant treatment outcomes first in a training
dataset (see Fig. 1D), then through replication using other
datasets. We hypothesized that a PGM-based model would result
in significantly higher accuracy for the short-term prediction of
response to antidepressants in adults with MDD, and achieve
replications across multiple classes of antidepressants and
treatment settings, compared with approaches that incorporated
only baseline clinical and sociodemographic predictor variables.

MATERIALS AND METHODS
Data sources
The datasets used for this study (described below and in
Supplementary Methods) included subjects that met DSM-IV
criteria for nonpsychotic MDD, confirmed using modules A, B
(screen-only version), and D of the Structured Clinical Interview for
DSM-IV (SCID). Subjects received at least 8 weeks of treatment
with a study drug (see Supplementary Table 1), i.e., selective
serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine
reuptake inhibitors (SNRIs) or tricyclic antidepressants (TCAs).
Depressive symptoms were measured using the 17-item clinician
rated version of Hamilton Depression Rating Scale (HDRS) at
baseline, 4 weeks, and 8 weeks. Participation in each of the studies
required IRB approval at their respective institutions.

Training datasets. We used data from 947 MDD patients treated
with SSRIs (citalopram/escitalopram) in two large, nonoverlapping
clinical trial datasets from the Mayo Clinic Pharmacogenomics
Research Network (PGRN-AMPS [19]) and the International SSRI
Pharmacogenomics Consortium (ISPC [20]) to develop the PGM
and derive prognoses rules.

Testing datasets. We then tested the prognostic capabilities of
our model using datasets from independent cohorts of MDD
patients as described:

● Paroxetine, fluoxetine, sertraline (248 ISPC outpatients), or
escitalopram (216 outpatients from a pooled dataset obtained
from Eli Lilly and Co.);

● Duloxetine (1067 outpatients from pooled datasets from Eli
Lilly and Co.); and

● Combination pharmacotherapy with an SSRI or SNRI plus a
TCA (465 hospitalized participants in the Munich Antidepres-
sant Response Signature [MARS [21]] Study).

Placebo data. Data from 575 patients who received a pill placebo
was used for ascertaining the prognostic effects of depression
symptoms that were most likely due to drug effects.

Outcomes
The categorical treatment outcomes based on HDRS total scores
were remission at 8 weeks (HDRS total score ≤7), response without
remission (referred to as response; a >50% reduction in HDRS total
score from baseline and HDRS total score >7), and nonresponse
(<50% reduction in HDRS total score from baseline).

Probabilistic graph: motivation and construction
The PGM in this study was composed of states (nodes
representing MDD severity) at each treatment timepoint and
probabilistic transitions between states (i.e., fraction of patients
moving between states of one timepoint to states of the next
timepoint). To demonstrate the complexity of comprehending
antidepressant response from a clinician’s perspective, let the
states of the PGM be N unique total HDRS scores observed at each
treatment timepoint t. Then, for each treatment timepoint (t), the

number of trajectories of scores is proportional to Nt. As shown in
Fig. 1C, such a complex array of trajectories is difficult to interpret
and is of little clinical value for estimating treatment outcomes.
To derive a more compact representation of antidepressant

response trajectories, t could not be reduced because the follow-
up timepoints were fixed; thus, we endeavored to reduce N by
stratifying patients. With the exception of remission at 8 weeks,
there was no natural definition of patient stratification at other
timepoints as defined by the range of HDRS scores. We used
unsupervised learning (specifically, Gaussian mixture models) to
infer patient subgroups, as described in our prior work [22].
Gaussian mixture models were chosen because of inherent latent
structures in the distribution of depression severity scores (i.e., the
distribution of scores was likely characterized by multiple Gaussian
curves). Inputs to the Gaussian mixture models were HDRS total
scores from each timepoint from PGRN-AMPS and ISPC subjects
treated with citalopram or escitalopram. Using Bayesian informa-
tion criteria to test goodness of fit, the Gaussian mixture models
algorithmically identified the minimum number of Gaussians (i.e.,
strata) that best approximated the actual distribution of total
depression severity scores. Patients were assigned to strata that
maximized the evaluation of the learned Gaussian function
parameters (i.e., mean and standard deviation). Using this
algorithmic formulation, three strata of patients (patient clusters)
were inferred in the training datasets based on total HDRS scores
at baseline, 4 weeks and 8 weeks [22]. The strata (described in
Supplementary Table 2), are named by a letter-number tuple. The
letters (e.g., A, B, and C) represent the treatment timepoints
(baseline, 4 and 8 weeks, respectively), and the numeric suffix at
each timepoint represents the level of depression severity, with
“3” being the most severely depressed subjects and “1” being the
least-severely depressed. The ranges of total HDRS scores for each
cluster are shown below:

● Baseline stratifications: A1 [14–18], A2 [19–24], A3 [25–39];
● Week 4 stratifications: B1 [0–8], B2 [9–15], B3 [16–31]; and
● Week 8 stratifications: C1 [0–7], C2 [8–15], and C3 [16–34].

The strata inferred at 8 weeks (C1, C2, and C3) had acceptable
clinical validity, given that all patients in the C1 stratum achieved
remission and all patients in the C3 stratum were nonresponders.
Eighty-seven percent of patients in the C2 stratum achieved
response without remission and the remaining 13% were
nonresponders.
In the absence of clustering, there were 680 unique MDD

response trajectories among the 947 subjects in the training
datasets (see Fig. 1C). With the use of patient clustering and
stratification at each treatment timepoint, the number of MDD
response trajectories reduced to a maximum of 27 paths (i.e., N=
3, and t= 3, and Nt= 33= 27). We then modeled the most-likely
variations in depression severity along these paths for patients,
starting from a given baseline stratum.

Probabilistic graph and path probabilities
A hidden Markov model (HMM) with forward transitions was
formulated to derive the trajectories of change in MDD severity in
the training datasets. For the treatment timepoints (baseline, 4
and 8 weeks), the HMM was characterized by (1) hidden states
(patient strata defined by range of total HDRS score, inferred from
the study data); (2) observation states at 4 and 8 weeks
(categorical response defined by HDRS total scores, based on
transitions between hidden states of one timepoint to the next);
and (3) forward transition probabilities (fraction of patients
moving between strata of one timepoint to the next timepoint).
The forward algorithm was used to derive the likelihood for all
paths that originated from a given stratum at baseline, and
terminated in a stratum at 8 weeks. By using the forward
algorithm, we did not have to condition the trajectories
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originating from a baseline stratum based on an outcome of
interest at 8 weeks. For every pair of strata at baseline and
8 weeks, the paths that had the highest likelihood and at least
10% of the patients from the baseline strata (tabulated in
Supplementary Table 2) were chosen as the symptom
dynamic paths.

Prognostic symptoms and prognoses rules
We sought to identify a group of prognostic symptoms that had (a)
non-zero symptom severities at baseline across the majority of
patients (to assess the quantum of early reductions in severity
during treatment for predicting long-term response; see Supple-
mentary Methods for details), (b) similar symptom severity scores
(creating symptom clusters derived using hierarchical clustering
for each stratum; illustrated in Fig. 2C (symptom clusters for
A1 stratum) and Supplementary Fig. 1 (symptom clusters for all
strata) at all timepoints on symptom dynamic paths originating
from a baseline stratum (to establish how many symptoms with
similar severity at baseline should improve at 4 weeks for
predicting 8-week outcomes), and (c) different distributions of
symptom severity scores between symptom dynamic paths (to

quantify the level of change in a group of symptoms at 4 weeks
needed to achieve specific outcomes at 8 weeks). These criteria
allowed us to identify a group of depressive symptoms that had
similar severities at baseline (criteria (a) and (b)) and across all
treatment timepoints (a grouping effect) and had different levels
of severity between individual symptoms dynamic pathways (a
discriminatory effect, with criterion (c)).
The thresholds of change in prognostic symptom severity were

derived based on absolute difference in median scores on
symptom dynamic paths between baseline and 4-week strata
(see Supplementary Table 3). Chi-square tests were used to
identify the minimum number of prognostic symptoms needed to
exceed (or not exceed) thresholds at 4 weeks to be prognostic of
outcomes at 8 weeks (see Supplementary Methods for details). We
then computed the accuracy (i.e., fraction of patients for whom
the prognoses rule predicted the correct treatment outcome) and
odds ratio (OR) of the most-likely outcome expected at 8 weeks in
patients who transitioned from a baseline stratum to a stratum at
4 weeks (also tabulated in Table 1). The OR represents the odds
that the expected treatment outcome at 8 weeks will occur if
patients are covered by the prognoses rule, compared to the odds

Fig. 2 Schematic of symptom dynamic paths and prognostic depressive symptoms. A Symptom dynamic paths in patients in the training
datasets (Mayo PGRN-AMPS and ISPC subjects). B Longitudinal variation in severity score of depressed mood (HDRS item) in patients starting
in the A3 stratum at baseline. C Symptom clusters within patient strata (e.g., A1 at baseline), illustrating the grouping of prognostic symptoms.
Fig. B, D, E, and F depict variations in depressed mood (prognostic symptom) and suicide ideation (nonprognostic symptom) in patients with
antidepressants or placebo on symptom dynamic paths A3 → B3 → C3 (nonresponders at 8 weeks), A3 → B2 → C2 (responders without
remission at 8 weeks), and A3→ B1→ C1 (remission at 8 weeks). In Fig. B, D, E and F, the solid blue lines in each figure represent the variations
(mean changes) in prognostic symptom scores, and shaded regions around the mean illustrate their 95% confidence intervals (CIs). The
boxplots and error bars represent the overall variability in prognostic symptom severity scores at each timepoint. Fig. B and D: Comprise all
patients originating in stratum A3 in training and placebo datasets. The variations in prognostic and nonprognostic symptoms in testing data
cohorts are visualized in Fig. E and F, respectively.
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of the same outcome occurring in patients not covered by the
prognoses rule. The statistical significance (p value) of the
prognostic accuracies derived using prognostic symptoms was
established by comparing the observed accuracy against the null
information rate (NIR)—a proxy for chance. The NIR of 0.53
represents the fraction of subjects in the training datasets for
whom (i) baseline clinical and sociodemographic factors as
predictors accurately predicted their treatment outcomes using
Random Forests (derived from our prior work [23]), and (ii)
categorical non-responder status at 4 weeks correctly predicted 8-
week outcomes (i.e., only 53% of the 514 subjects in our training
data who were nonresponders at 4 weeks [<50% improvement in
total HDRS score from baseline] were responders at 8 weeks).
Finally, we used Kolmogorov–Smirnov (for age) and Chi-square
tests (for sex and race) to evaluate if prognosis rules or accuracies
were associated with age, sex, or race (the common socio-
demographic factors across all datasets).

RESULTS
Symptom dynamic paths
For the patients treated with citalopram/escitalopram in the
training dataset, specific symptom dynamic paths (Fig. 2A) were
derived (see Supplementary Table 2 for likelihood scores for
symptom dynamic paths). Patients starting in any stratum at
baseline were most likely to achieve remission at 8 weeks if they
transitioned into the B1 stratum at 4 weeks, and the clinical
observation at 4 weeks was response. Patients starting in the A2 or
A3 strata at baseline were most likely to achieve response at
8 weeks if they transitioned into the B2 stratum at 4 weeks and
the clinical observation at 4 weeks was response; and were most
likely to be nonresponders at 8 weeks if they transitioned into the
B3 stratum at 4 weeks and the clinical observation at 4 weeks was
also a nonresponse. Patients starting in the A1 stratum at baseline
were most likely to be nonresponders at 8 weeks if they
transitioned into the B2 stratum at 4 weeks and the clinical
observation at 4 weeks was also nonresponse. There was no
symptom dynamic path between A1 to C3 since fewer than 8% of
the patients reached the C3 stratum at 8 weeks via either the B3 or
the B2 strata at 4 weeks.

Prognostic symptoms
Four HDRS items (depressed mood, psychic anxiety, guilt feelings/
delusions, and work/activities) met the prognostic symptom
criteria for patients in the training dataset. We illustrate the
variations in severity of prognostic symptoms in patients with and
without the superimposition of symptom dynamic paths (e.g., for
depressed mood, see Fig. 2B, D), using data from subjects
originating in A3 stratum at baseline. Improvement in the severity
of depressed mood can be visualized at 4 and 8 weeks in Fig. 2B,
but there is still a high degree of interpatient variation in the
scores for depressed mood (as shown by the large spread of
boxplots) when subjects are not stratified and analyzed using
symptom dynamic paths. By stratifying patients and deriving
symptom dynamic paths (e.g., those originating from stratum A3,
as shown in Fig. 2D), the discriminatory effect of scores at 8 weeks
was better reflected in the patterns of response at 4 weeks. No
such discriminatory effects occur for nonprognostic symptoms, as
shown in Supplementary Fig. 2. No prognostic symptoms could be
identified for patients who received placebo using only the
prognostic symptom criteria (see Fig. 2D).

Prognostic performance of prognostic symptoms in training
dataset
We illustrate the operationalization of deriving prognoses using
changes in total HDRS and prognostic symptoms in Fig. 3A. The
prognostic performance of the changes in prognostic symptoms
at 4 weeks for predicting 8-week outcomes in citalopram- orTa
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escitalopram-treatment patients are summarized below, and are
shown in Fig. 3B and Table 1:

● For patients originating in the A3 stratum: (1) the accuracy in
the prediction of nonresponse at 8 weeks was 60% (OR 6.9, CI
2.03–23.74, p= 0.05) by transitioning into the B3 stratum with
≥3 prognostic symptoms improved by ≤1 point at 4 weeks; (2)
the accuracy in the prediction of response at 8 weeks was 85%
(OR 3.27, CI 1.26–8.5, p= 4.83E-13) by transitioning into the
B2 stratum with ≥2 prognostic symptoms improved by ≥2
points at 4 weeks; and (3) the accuracy in the prediction of
remission at 8 weeks was 70% (OR 2.4, CI 0.8–19, p= 5.64E-7)
by transitioning into the B1 stratum with ≥2 prognostic
symptoms improved by ≥2 points at 4 weeks.

● For patients originating in the A2 stratum: (1) the accuracy in
the prediction of nonresponse at 8 weeks was 80% (OR 7.7, CI
1.46–40.1, p= 1.12E-9) by transitioning into the B3 stratum
with ≥3 prognostic symptoms improved by ≤1 point at
4 weeks; (2) the accuracy in the prediction of response at
8 weeks was 85% (OR 5.4, CI 2.3–12.87, p= 4.83E-13) by
transitioning into the B2 stratum with ≥2 prognostic
symptoms improved by ≥1 point at 4 weeks, and (3) the
accuracy in the prediction of remission at 8 weeks was 75%
(OR 2.2, CI 0.6–7.66, p= 5.64E-7) by transitioning into the
B1 stratum with ≥2 prognostic symptoms improved by ≥2
points at 4 weeks.

● For patients originating in the A1 stratum: (1) the accuracy in
the prediction of nonresponse at 8 weeks was 70% (OR 4.71,
CI 0.81–27.23, p= 7.85–5) by transitioning into the B2 or
B3 stratum with ≥3 prognostic symptoms improved by ≤1
point at 4 weeks; and (2) the accuracy in the prediction of

remission at 8 weeks was 82% (OR 4.35, CI 1.18–16, p= 6.15E-
11) by transitioning into the B1 stratum with ≥1 prognostic
symptoms improved by ≥2 points at 4 weeks.

The criteria for minimum number of prognostic symptoms
needed for threshold rules to be met was applicable in over 67%
(see coverage column in Table 1) of the patients starting from any
of the baseline strata. There were no associations with age, sex, or
race for meeting the prognostic symptom criteria or accuracy of
prognoses. The observed outcome was nonresponse for nearly all
(92%) of the remaining patients.

Replication of prognostic performance of prognostic symptoms in
testing datasets
We first assigned patients in the testing datasets who were treated
with SSRIs, duloxetine, and combination therapy to a stratum at
each timepoint, as defined by the same range of total HDRS scores
derived from the training dataset. As shown in Fig. 2E, F,
prognostic and nonprognostic symptom variations in the testing
datasets (see Fig. 2E, F) were similar to those of the training
dataset (see Fig. 2D). We then calculated the accuracies of
forecasted outcomes at 8 weeks (see Fig. 3B) using the same
prognostic thresholds of prognostic symptom changes at 4 weeks
derived from the training cohort (additional details in Table 1).
Prognoses performance of the change in prognostic symptoms at
4 weeks for predicting 8-week outcomes in the testing datasets
are summarized below, and are shown in Table 1:

● For patients originating in the A3 stratum: (1) the accuracies in
the prediction of nonresponse at 8 weeks were 66%, 73%, and
67%, respectively, for patients treated with other SSRIs,
duloxetine, and combination therapy who transitioned to

Fig. 3 Prognosis rules and their predictive accuracies. A Demonstration of the operationalization of prognoses rules to predict 8-week
treatment outcome. B For each of the baseline and 4-week strata, we illustrate the accuracy of the prognoses in comparison with the average
prediction accuracy (53% in dashed red line) that is achieved when using only baseline clinical and sociodemographic factors as predictors.
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the B3 stratum with ≥3 prognostic symptoms improved by ≤1
point at 4 weeks; (2) the accuracies in the prediction of
response at 8 weeks were 88%, 84%, and 73%, respectively, for
patients who transitioned to the B2 stratum with ≥2
prognostic symptoms improved by ≥2 points at 4 weeks;
and (3) the accuracies in the prediction of remission at
8 weeks were noncalculable (due to lack of samples), 83% and
69% (p ≤ 0.08), respectively, for patients who transitioned to
the B1 stratum with ≥2 prognostic symptoms improved by ≥2
points at 4 weeks.

● For patients originating in the A2 stratum: (1) the accuracies in
prediction of nonresponse at 8 weeks was 93%, 78%, and 76%,
respectively, for patients treated with other SSRIs, duloxetine,
and combination therapy who transitioned to the B3 stratum
with ≥3 prognostic symptoms improved by ≤1 point at
4 weeks; (2) the accuracies in the prediction of response at
8 weeks was 63%, 62%, and 68%, respectively, for patients
who transitioned to the B2 stratum with ≥2 prognostic
symptoms improved by ≥1 point at 4 weeks; and (3) the
accuracies in prognoses of remission at 8 weeks was 72%,
77%, and 57%, respectively, for patients who transitioned to
the B1 stratum with ≥2 prognostic symptoms improved by ≥2
points at 4 weeks.

● For patients originating in the A1 stratum: (1) the accuracies in
the prediction of nonresponse at 8 weeks was 72%, 63%, and
76%, respectively, for patients treated with other SSRIs,
duloxetine, and combination therapy who transitioned to
the B2 or B3 stratum with ≥3 prognostic symptoms improved
by ≤1 point at 4 weeks; (2) the accuracies in the prediction of
remission at 8 weeks was 86%, 83%, and 57%, respectively, for
patients who transitioned to the B1 stratum with ≥1
prognostic symptom improved by ≥2 points at 4 weeks.

Analogous to the case in the training dataset, the minimum
prognostic symptom criteria captured variations in ≥71% of
patients from each baseline cluster across all of the testing
datasets, and sex was not associated with chances of meeting the
prognostic symptom criteria or the prognoses accuracy. Nearly all
(95%) of the remaining of patients had nonresponse as their
outcome.

Lack of prognostic symptoms and prognoses in placebo-treated
patients
Prognostic depressive symptoms could not be identified using the
criteria specified earlier in patients who received placebo. Instead,
in Table 1, we report the accuracy and odds of outcomes in
placebo patients (assigned to baseline and 4-week strata) using
the four core HDRS-derived symptoms. The predictive accuracies
in nearly all outcomes and the odds ratios for all outcomes were
lower than those observed in escitalopram/citalopram-treated
subjects from the training datasets (see Table 1). The only
exception was that the odds ratio for predicting nonresponse was
higher in placebo patients than escitalopram/citalopram-treated
subjects.

DISCUSSION
We used probabilistic graphical models (PGMs) in conjunction
with unsupervised machine learning methods to identify indivi-
dual depressive symptoms that were highly predictive of
antidepressant response, and thresholds of improvement needed
in those symptoms by 4 weeks (an interim timepoint supported by
treatment guidelines for making changes in antidepressant
treatment [24–26]) to predict remission, response, or nonresponse
by 8 weeks (which conservatively defines the end of a therapeutic
antidepressant trial). The high levels of predictive accuracy
achieved using a training dataset comprised of citalopram- or
escitalopram-treated depressed outpatients replicated in three

validation datasets that included depressed inpatients as well as
outpatients treated with other SSRIs, duloxetine, and antidepres-
sant combinations.
The prognostic depressive symptoms in this work were defined

based on observed homogeneity in their responses at all
timepoints, while demonstrating differential patterns of change
under antidepressant treatment that were prognostic of clinical
outcomes at 8 weeks. Whether they are core to the syndrome of
MDD is a question not addressed in this work. However, there is a
significant overlap of prognostic symptoms inferred in this work
with symptoms in existing subscales (Maier-6 [27], Bech-6 [28],
HAMD7 [29], and VQIDS-C5 [30]) that were derived from the full-
scale HDRS or other rating scales to measure depressive
symptoms that are more responsive to antidepressants and less-
sensitive to their adverse effects. For example, the four prognostic
symptoms derived from HDRS in this work were all included in
Maier-6, Bech-6, and HAMD7. The prognostic depressive symp-
toms identified with QIDS-C in our study align with the items that
were included in a brief version of QIDS-C [30] and with the “core
emotional” symptoms of depression identified by others as being
more responsive to citalopram/escitalopram treatment than were
other depressive symptom clusters [14]. Our approach extends
this prior work by establishing the prognostic capabilities of these
symptoms using an unbiased approach.
The mathematical constructs of PGMs represent an analytical

novelty in this work that permitted us to reason with uncertainty
and overcome the challenges in interpreting longitudinal varia-
tions of antidepressant response when using other approaches,
such as latent variable analyses with growth mixture models
[14–16, 31–36]. For example, we used probabilistic graphs in this
work instead of growth mixture models, given that growth
mixture models (1) do not find paths algorithmically by
conditioning upon improvements in symptoms at intermediate
timepoints, (2) offer very limited interpretability of dynamics of
symptom changes, and (3) need sufficient domain expertise to
define the number of latent classes and trajectories, and ensure
appropriate model fit, and then interpret the results [37–41]
(which might prove challenging in analyses that are exploratory in
nature). PGMs also provide an extendable analytical framework to
derive antidepressant response trajectories for longer observation
periods beyond 8 weeks, with the additional ability to identify
interpretable response trajectories when the study timeline is a
continuum (e.g., extracting visit data from electronic health
records) as opposed to discrete timepoints (by formulating the
PGM as a Markov jump process [42]). Deep learning approaches
have been explored for inferring patient subgroups based on
homogeneity in disease trajectories in a data-driven manner [43].
In fact, deep learning approaches and probabilistic graphs both
have the advantage of high utility for modeling outcomes without
requiring a prespecified number of trajectories. The advantage of
PGMs over traditional deep learning or growth mixture model
approaches lies in the mathematical formulation of PGMs that
allow for reasoning with uncertainty and permits to conditioning
future disease variations based on trajectories up to an interim
timepoint. In our work, the forward algorithm construct in our
PGM parallels the logical scheme used by clinicians in the
measurement-based care of depressed patients. That is, the
severity of depressive symptoms at baseline and changes
in these symptoms are used to drive treatment decisions at an
interim timepoint, prior to completion of a therapeutic
antidepressant trial.
Based on the clinically-driven design of our PGM (incorporating

change in depressive symptoms at 4 weeks in stratified patients),
our approach could begin to inform the development of clinical
decision support tools to augment (but not replace) practitioner
expertise, improve patient engagement, and enhance shared
decision-making by providing highly-interpretable quantitative
prognostic information as a supplement to clinical judgment and
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patient preferences. Importantly, the PGM-based approach
described in this work allows for the integration of biological
measures, which may then be used to not only improve the
predictability of antidepressant outcomes, but may also serve as a
future strategy for individualizing choices of therapy for people
with depression [23, 44]. Further work is needed to test the
predictive capabilities of this approach, with the integration of
biological measures, in prospective trials (NCT04355650), and in
environments where measurement-based care of depressed
patients is routinely delivered.
The consistently high predictive accuracies across numerous

commonly-prescribed antidepressants observed in this work have
several important implications that fit well with observations from
the STAR*D trial: even with rigorously conducted antidepressant
treatment, only 53% of patients may be expected to remit after
6 months [45–47]. By altering treatment at 4 weeks, an interim
timepoint supported by practice guidelines and clinical evidence
[9, 24, 25], a total of 2–4 months could be saved across two
therapeutic trials that are each likely to fail after 8–12 weeks, a
period of time that is often required for many depressed patients
to remit or improve substantially [9, 47]. Our approach, which
relied on only a limited number of depressive symptoms in
addition to total depression scores to predict treatment outcomes,
may introduce needed efficiencies into busy practices in addition
to optimizing predictive accuracies. This feature may be especially
important in busy primary care practices, and may hasten referrals
for specialty mental health consultation or treatment if the
predicted outcomes of treatment are nonresponse. As a
cautionary note, we do not suggest that the full versions of
depression rating scales be replaced with shorter versions based
on prognostic symptoms only, which would fail to consider all of
the important elements of MDD severity for individual patients,
including suicidal ideation. Rather, our results suggest that
focusing on early changes in prognostic symptoms may increase
the prognostic value of full-scale depression measures, which
were designed to measure disease severity but not necessarily to
predict outcomes.
It is of significant interest that prognostic symptoms could not

be identified in patients who received placebo. This observation is
important because placebo response rates in clinical trials of
antidepressants in MDD patients are high, ranging from 35 to 40%
[48]. Moreover, prior applications of machine learning to large
antidepressant clinical trial datasets have not shown systematic
differences in the patterns of change in individual depressive
symptoms over time between placebo and active treatment, even
in placebo responders [14]. Although not a direct test of
hypothesis (considering a relatively smaller number of placebo-
treated subjects relative to those who received active treatment),
our findings do suggest that the antidepressants we studied, as a
group, exerted systematic effects on depressive symptoms that
could not be demonstrated in placebo-treated subjects.
There are limitations to our study. Due to lack of data, we were

unable to investigate whether changes in prognostic symptoms at
timepoints earlier than 4 weeks can accurately predict clinical
outcomes at 8 weeks, given evidence that eventual response may
sometimes be predictable as early as 2 weeks [49]. The study data
was restricted to three timepoints, which may not be sufficient to
capture the full arc of the disease, including variations in
depression severity and associated long-term outcomes that
extend well beyond 8 weeks. There was no dose standardization
across datasets, although this is less concerning given that drug
dosage was not associated with clinical outcomes here or in
previous studies [50]. Despite replication across independent
testing datasets, additional studies are needed to establish the
generalizability of our approach to other rating scales, medications
and treatment approaches beyond those studied here, and longer
follow-up durations. Our model, due to lack of data, does not
account for the effects of nonadherence, comorbid diagnoses,

environmental, and other socioeconomic factors. We were unable
to address which treatments should be considered after failure to
respond to a given medication due to the lack of sequential trial
data. The impact of our findings on those who dropped out of
treatment prior to 8 weeks is unknown because our analyses
focused on trial completers. Finally, we did not have access to
complete data on the number of previous therapeutic antide-
pressant trials for study patients, an important limitation given
that the odds of achieving a positive treatment outcome with
antidepressant treatment correlates inversely with the number of
previous treatment failures [51].
In summary, this is the first study to examine PGMs in

conjunction with unsupervised machine learning methods to
derive interpretable and accurate prognoses of antidepressant
treatment outcomes. The consistent results across several datasets
from studies utilizing different antidepressant treatments and
populations suggests this method to potentially utilize symptom
trajectory improvements across time to provide much needed
clinical decision support earlier in a patient’s treatment course.
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