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A multivariate neuromonitoring approach to neuroplasticity-
based computerized cognitive training in recent onset psychosis
Shalaila S. Haas 1, Linda A. Antonucci2,3, Julian Wenzel4, Anne Ruef2, Bruno Biagianti5,6, Marco Paolini7, Boris-Stephan Rauchmann2,7,
Johanna Weiske2, Joseph Kambeitz 4, Stefan Borgwardt 8, Paolo Brambilla 9,10, Eva Meisenzahl11, Raimo K. R. Salokangas 12,
Rachel Upthegrove13,14, Stephen J. Wood13,15,16, Nikolaos Koutsouleris2 and Lana Kambeitz-Ilankovic2,4

Two decades of studies suggest that computerized cognitive training (CCT) has an effect on cognitive improvement and the
restoration of brain activity. Nevertheless, individual response to CCT remains heterogenous, and the predictive potential of
neuroimaging in gauging response to CCT remains unknown. We employed multivariate pattern analysis (MVPA) on whole-brain
resting-state functional connectivity (rsFC) to (neuro)monitor clinical outcome defined as psychosis-likeness change after 10-hours
of CCT in recent onset psychosis (ROP) patients. Additionally, we investigated if sensory processing (SP) change during CCT is
associated with individual psychosis-likeness change and cognitive gains after CCT. 26 ROP patients were divided into maintainers
and improvers based on their SP change during CCT. A support vector machine (SVM) classifier separating 56 healthy controls (HC)
from 35 ROP patients using rsFC (balanced accuracy of 65.5%, P < 0.01) was built in an independent sample to create a naturalistic
model representing the HC-ROP hyperplane. This model was out-of-sample cross-validated in the ROP patients from the CCT trial to
assess associations between rsFC pattern change, cognitive gains and SP during CCT. Patients with intact SP threshold at baseline
showed improved attention despite psychosis status on the SVM hyperplane at follow-up (p < 0.05). Contrarily, the attentional gains
occurred in the ROP patients who showed impaired SP at baseline only if rsfMRI diagnosis status shifted to the healthy-like side of
the SVM continuum. Our results reveal the utility of MVPA for elucidating treatment response neuromarkers based on rsFC-SP
change and pave the road to more personalized interventions.

Neuropsychopharmacology (2021) 46:828–835; https://doi.org/10.1038/s41386-020-00877-4

INTRODUCTION
Neuroplasticity-based computerized cognitive training (CCT) has
frequently been used as a supplementary treatment in psychotic
illness [1, 2]. CCT implements learning-based neuroplasticity
principles to restore neuromodulatory processes underlying the
structure, function, and connections in the brain that support
perceptual, cognitive, social, and motor abilities often disturbed in
psychotic illness [3, 4]. This therapeutic approach received
evidence in circumventing cognitive deficits [5–7] and poor
functional outcome in psychosis [8, 9]. Previous meta-analyses
indicate that cognitive remediation has a small to moderate effect
on multiple cognitive domains including attention, working
memory, executive functioning, and social cognition in the
treatment of schizophrenia [6, 7, 10]. In particular, research has
documented the neural plasticity of cortical responses as an
individual acquires new perceptual and cognitive abilities [11, 12].
Further evidence suggests that preserved brain network

modularity [13] and neuronal fiber integrity may be important
determinants for training-induced neurocognitive plasticity, parti-
cularly in domains of attention [14], executive function [14], and
social cognition [15]. Previous research on selective attention
demonstrates marked malleability of neural systems in charge of
potential changes in response to intervention [16]. Dysplasticity in
schizophrenia has been known for decades, and while it has
predominantly been reported in motor and frontal areas [17, 18], it
is also expressed in multiple brain regions including sensory
systems [19]. The underlying mechanism of neuroplasticity-based
CCT is meant to induce widespread changes in both cortical and
subcortical representations and may not be captured by single-
region activation maps measured by task-based MRI [3, 20, 21].
Importantly, the variability in neuroplastic response induced by

intermediate neurocognitive and brain phenotypes may moderate
the neuroplastic response induced by respective training para-
digms [22]. To mitigate the heterogeneity in response to CCT and
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multidimensionality of neuroimaging data, multivariate pattern
analysis (MVPA) allows quantification of diagnostic group member-
ship or treatment response at the individual level [23, 24],
particularly when clinical data is complemented with neurobiolo-
gical proxies [25]. These proxies may entail information on
intermediate- and endo-phenotypes responsible for the high
degree of variability in the response to CCT. Specifically, they may
serve as “neuromarkers” [26, 27] that successfully aid in identifying
disorders and factors determining not only illness progression
[28, 29], but also monitoring response to treatment (theranostics)
[27, 30–32]. Recently, brain connectivity measures derived from
task-based functional Magnetic Resonance Imaging (fMRI) were
used as a proxy for cognitive performance [33]. Resting-state
functional connectivity (rsFC) has been used to predict diagnosis
and clinical outcome of patients with psychosis and it demon-
strated a high level of within-subject reproducibility that is relevant
for longitudinal monitoring of treatment response [34, 35].
Finally, the high degree of variability in cognitive gains may be

explained by individual differences in engagement level of
the underlying neural system target and learning progress in
CCT [36, 37]. These studies showed greater deficits in mismatch
negativity, an event-related potential elicited pre-attentively,
predicted greater improvements after auditory CCT. Still, it
remains unknown whether inter-individual differences in sensory
processing during CCT in combination with neuroimaging
prediction on the single-subject level may inform more persona-
lized CCT in patients at the earlier stages of psychosis [38] early in
the course of CCT (first 10 h).
The aim was to investigate individual response to 10 h of CCT

by measuring changes in psychosis-likeness based on rsFC
patterns in relation to sensory processing. First, we developed
an original multivariate model, able to distinguish HC from ROP
patients using rsFC in a naturalistic sample. Second, this model
was applied to the CCT intervention sample, to assess and monitor
clinical outcome in response to CCT. Hereby, we measured the
change of psychosis-likeness after 10 h of CCT at the single-
subject level employing machine learning on rsFC pattern before
and after CCT. In the third step, we investigated how psychosis-
likeness change was related to sensory processing. In the final
step, we investigated the effects of sensory processing change
(SPC), psychosis-likeness change (ROP-HC continuum) and their
association on cognitive gains, in response to the intervention. We
expected to observe cognitive gains in lower-order cognitive
functions due to the drill-and-practice approach used and short
duration of the intervention.

MATERIALS AND METHODS
Sample
Two samples were included from the Early Detection and
Intervention Center at the Department of Psychiatry and Psy-
chotherapy of the Ludwig-Maximilians-University (LMU) in Munich,
Germany: (1) the original PRONIA study diagnostic sample of 35
ROP patients and 56 HC recruited from the LMU Munich site of the
naturalistic, European multi-center PRONIA study [39] (Table 1) to
generate the SVM classification HC-ROP model to create the
psychosis-likeness hyperplane, and (2) the CCT intervention sample,
independent from the original SVM sample cohort, that included 26
patients with ROP (Fig. S1) undergoing CCT in a randomized
controlled trial (ClinicalTrials.gov Identifier: NCT03962426). Although
PRONIA is a multi-center study, we included only the LMU, Munich
site to generate our HC-ROP model as (1) the intervention sample
was acquired from the same study site (2) neuroimaging site-effects
can be an additional source of variability in SVM classification which
is challenging to mitigate, especially for the resting-state modality
[40–44]. For both the diagnostic classification and intervention
samples, ROP patients were included if illness duration was below 2
years and if the criteria for an affective or non-affective psychotic

episode according to the Diagnostic and Statistical Manual of
Mental Disorders (DSM-IV) [45] was fulfilled (supplementary
information, Section 1.1). All participants provided written informed
consent prior to study inclusion while all procedures performed in
this study were in accordance with the ethical standards of the
Local Research Ethics Committee of the LMU and with the 1964
Helsinki Declaration and its later amendments or comparable
ethical standards.

Procedures
CCT Intervention. Participants included in the active intervention
group (N= 26, Table 2) completed an average of 9.98 h of CCT
within 20 30-min individual sessions over 5 weeks (Supplementary
Information, Fig. S1 and Section 1.2). The training consisted of four
exercises (Table S1) that strike a balance in improving multiple
cognitive domains including social cognition, processing speed,
and attention. Task difficulty is adjusted to maintain 75–80%
accuracy of the participants’ responses by constantly adapting
presentation times of the displayed facial stimulus [3, 46].
Difficulty levels are modulated based on a specific individual’s

Table 1. Baseline demographic and clinical characteristics for ROP
patients and HC individuals included for the generation of a healthy-
to-psychosis model based on resting-state functional connectivity.

ROP (N= 35) HC (N= 56) T/ χ2 P value

Number of female (%) 13 (37.14 %) 36 (64.29 %) 6.39 0.012*

Age (SD) 30.43 (6.15) 30.64 (6.78) 0.151 0.88

Years education (SD)a 13.88 (3.45) 15.73 (3.26) 2.51 0.014*

Premorbid IQ (SD) 100.29 (18.59) 109.64 (13.24) 2.80 0.006**

Handednessa – – 0.27 0.88

Right (%) 29 47 – –

Mixed (%) 2 5 – –

Left (%) 2 3 – –

Diagnosis (%)

No Axis I Diagnosis 0 56 – –

Schizophrenia 19 (54.29 %) – – –

Schizoaffective
disorder

1 (2.63 %) – – –

Schizophreniform
disorder

3 (8.57 %) – – –

Delusional disorder 5 (13.16 %) – – –

Psychotic
disorder NOS

5 (13.16 %) – – –

Substance-induced
psychotic disorder

2 (5.26 %) – – –

GAF past month 41.18 (9.87) 83.7 (5.11) 26.91 <0.001***

GF current

Role (SD) 5.06 (1.82) 8.29 (0.59) 12.24 <0.001***

Social (SD) 5.65 (1.32) 8.25 (0.69) 12.24 <0.001***

PANSS

Total (SD) 67.03 (14.45) – – –

Positive (SD) 18.00 (5.48) – – –

Negative (SD) 15.06 (5.82) – – –

General (SD) 33.97 (6.76) – – –

MRI Magnetic Resonance Imaging, NOS not otherwise specified, MDD Major
Depressive Disorder, CPZ chlorpromazine equivalent, GAF Global Assess-
ment of Functioning, GF Global Functioning, PANSS Positive and Negative
Syndrome Scale.
aTwo participants did not provide total years of education at baseline and
three did not complete the self-rating instrument which includes
information regarding handedness.
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rate of learning, represented by a ‘learning score’, are quantified
by analyzing the stimulus presentation times for a specific level
within a specific task (Supplementary Information, Section 1.3) and
have previously been shown to influence neural plasticity and
transfer of the training [47]. While all four exercises target early
social sensory processing, we chose to study the Emotion
Matching Task (EMT) as a potential proxy for target engagement,
given its ability to capture the processing of basic social

information while improving speeded facial emotion decision-
making (Supplementary Information, Section 1.3). 26 patients that
completed training on the Emotion Matching Task (EMT) were
thus dichotomized into maintainers (N= 14) and improvers (N=
12) based on a median split of their learning scores (Supplemen-
tary Information, Section 1.3, Fig. S2). Improvers showed impaired
performance at baseline and reached the psychophysical thresh-
old (~31ms) for EMT during training (high SPC), while maintainers
showed intact psychophysical threshold for EMT at baseline that
were sustained throughout the training (low SPC). The current
analysis selected a level that was played by everyone and
contained the most repetitions per participant.

Assessment procedure
Clinical assessment occurred during intake at baseline (T0) and again
at follow-up (FU) post-intervention. Clinical diagnosis was assessed
using the Structured Clinical Interview for Diagnostic and Statistical
Manual of Mental Disorders (SCID) [45]. In order to assess clinical
status and the presence and severity of symptoms, the Positive
and Negative Syndrome Scale (PANSS) was administered [48]. Global
rating of functioning was assessed using the Global Assessment
of Functioning (GAF) Disability and Impairment Scale of the DSM-IV
[49]. Additionally, the clinician-rated Global Functioning - Social
(GF-S) and Global Functioning - Role (GF-R) Scales were used to
assess social and role functioning separately [50].
A cross-domain neuropsychological test battery comprising 9

tests were administered to patients in the intervention sample at
T0 and FU in a fixed order (Supplementary Information, Section
1.4). Tests were z-score transformed based on the study sample to
closely reflect cognitive domains based on the Measurement and
Treatment Research to Improve Cognition in Schizophrenia
(MATRICS) recommended procedures [51] (Table S2).

Imaging procedure
All participants from both the original sample and intervention
sample were scanned using the same 3 Tesla Philips Ingenia
scanner with 32-channel radio-frequency coil at the Radiology
Department in the university clinic of the LMU in Munich,
Germany (Supplemental Information, Section 1.5). Both structural
MRI (sMRI) and resting-state fMRI (rsfMRI) were acquired from all
participants. T1 sMRI images were preprocessed using CAT12
(Supplementary Information, Section 1.6). rsfMRI preprocessing
was divided into two main processes: core steps included
realignment, coregistration, warping to Montreal Neurological
Imaging (MNI) space and smoothing, whereas denoising steps
comprised of motion correction using time series despiking with
the BrainWavelet Toolbox (http://www.brainwavelet.org/) [52],
background filtering and temporal band-pass filtering (0.01–0.08
Hz), extracting signal from white matter (WM) and cerebrospinal
fluid (CSF), correcting for movement (Friston 24 movement
parameters) [53] and calculating framewise displacement (FD)
for each subject to determine inclusion [54] (Supplementary
Information, Section 1.6).
Following sMRI and rsfMRI preprocessing, the brain was

parcellated into 160 regions of interest (ROIs) according to the
Dosenbach functional atlas [55]. We extracted the mean signal
from 10mm spheres centered at each ROI using the MarsBaR
Toolbox [56] version 0.42. Next, the Pearson’s correlation of
average time series between pairwise ROIs was calculated within
Matlab R2015 using in-house scripts—resulting in 12720 rsFC for
each participant. Connectivity matrices were generated for each
subject in both the intervention sample and the original
diagnostic classification sample.

Machine learning strategy
The machine learning software NeuroMiner [39] version 1.0
was used to set up the machine learning analysis pipeline to
extract multivariate decision rules from the rsFC data using an

Table 2. Baseline demographic information of the intervention
sample.

Maintainers
EMT (N= 14)

Improvers
EMT (N= 12)

T/ χ2 P value

Number of female (%) 8 (57.14%) 3 (25.00%) 2.74 0.098

Age (SD) 27.46 (5.84) 26.10 (7.00) 0.54 0.594

Years education (SD) 14.96 (2.71) 15.79 (4.73) −0.56 0.582

Premorbid IQ (SD) 97.14 (16.02) 100.83
(13.62)

−0.63 0.537

Handedness – – 2.20 0.333

Right (%) 9 11 – –

Mixed (%) 2 0 – –

Left (%) 1 1 – –

Diagnosis – – 6.55 0.477

Schizophrenia (%) 4 (28.57 %) 4 (33.33 %) – –

Schizoaffective
disorder (%)

1 (7.14 %) - – –

Schizophreniform
disorder (%)

1 (7.14 %) 2 (16.67 %) – –

Brief psychotic
disorder (%)

3 (21.43 %) 3 (25.00 %) – –

Delusional
disorder (%)

1 (7.14 %) 2 (16.67 %) – –

Psychotic disorder
NOS (%)

1 (7.14%) – – –

MDD with psychotic
symptoms (%)

3 (21.43 %) – – –

Substance-induced
psychotic
disorder (%)

– 1 (8.33 %) – –

Medication at baseline
(N= 39)

CPZ equivalent (SD) 142.68
(162.49)

278.44
(258.96)

−1.63 0.117

Days between
assessments

51.29 (13.12) 47.42 (8.99) 0.86 0.397

Number of hours
trained

9.91 (0.74) 10.10 (0.73) −0.49 0.630

GAF past month 46.25 (13.86) 48.00 (16.87) −0.29 0.774

GF current

Role (SD) 4.57 (1.45) 4.25 (1.54) 0.55 0.590

Social (SD) 6.00 (1.30) 6.00 (0.95) 0.00 1.000

PANSS

Total (SD) 66.07 (15.61) 69.83 (17.94) −0.57 0.573

Positive (SD) 19.21 (6.12) 19.83 (5.88) −0.26 0.796

Negative (SD) 13.43 (5.24) 15.83 (6.19) −1.07 0.294

General (SD) 33.43 (9.10) 34.17 (9.11) −0.21 0.839

EMT Emotion Matching Task, MRI Magnetic Resonance Imaging, NOS not
otherwise specified, MDD Major Depressive Disorder, CPZ chlorpromazine
equivalent, GAF Global Assessment of Functioning, GF Global Functioning,
PANSS Positive and Negative Syndrome Scale.
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out-of-sample cross-validation (OOCV) strategy. First, a HC-ROP
rsFC classifier was built to identify a disease-related rsFC signa-
ture. To investigate whether this disease-related signature
could be used to track neural response to CCT in ROP patients,
models generated for HC-ROP classification were applied to the
intervention sample at both T0 and FU using OOCV. Here, we
expected to identify a pattern of rsFC anomalies that not only
classified HC and ROP with high accuracy, but that could also
identify a set of individuals whose rsFC would shift to a more
healthy-like rsFC pattern across the SVM hyperplane (Fig. 1).

Machine learning analysis pipeline
NeuroMiner was used to create a predictive model that could
separate patients with ROP from HC based on rsFC in the original
diagnostic classification sample. To avoid overfitting, test the
estimation of the model’s generalizability, and prevent informa-
tion leakage between training and test participants, repeated-
nested double cross-validation (CV) was employed [57, 58]
(Supplementary Information, Section 1.7). This CV structure
embeds a 10-fold inner CV cycle (CV1), where models are
generated, in another super-ordinate 10-fold outer CV cycle
(CV2), which is ultimately used to test the model’s generalizability
[59, 60]. Both inner and outer CV cycles were permuted 10
iterations. Within CV1, matrices were pruned of zero-variance
features, and sex and IQ effects were regressed out of the feature
set using a partial correlation method. Then, a dimensionality
reduction procedure was applied using Principal Component
Analysis (PCA) in the CV1 training data to reduce the risk of
overfitting and increase the generalizability of classification
models [61] following previous methods [62]. Principal compo-
nent (PC) scores were 0–1 scaled and fed to a linear class-
weighted Support Vector Machine (SVM) algorithm (LIBSVM 3.1.2
L1-Loss SVC) [39, 63] to detect a set of PCs that optimally
predicted the training and test cases’ labels in a given CV1
partition. The default regularization parameter of C= 1 was used
within CV1 [64]. This analysis pipeline was subsequently applied to
each k-fold and N-permutation CV2 cycle, determining the
participant’s classification (HC vs. ROP) through majority voting.

Statistical significance was assessed through permutation testing
[57, 65], with α= 0.05 and 1000 permutations (Supplementary
Information, Section 1.7).

Validation analyses of classifier
The HC-ROP classifier built on the independent sample was
subsequently applied to the intervention sample at T0 and FU
without any in-between retraining using OOCV. The OOCV model
provides a subject-specific linear SVM decision score at each
timepoint for every ROP patient in the intervention sample.
Positive decision scores indicate a predicted class membership of
ROP, whereas negative decision scores indicate a predicted class
membership belonging to HC. The difference in decision scores
between the two time-points (FU-T0), that we address as
psychosis-likeness change, provides an estimate of the direction
of shift across the SVM hyperplane following CCT. Positive
differences indicate a shift in the more psychosis-like direction,
whereas negative differences indicate a shift in the more healthy-
like direction across the SVM hyperplane. The measured changes
in decision scores between the two time-points serve to verify if
the multivariate rsFC signature from psychosis-like to healthy-like
has been altered in the CCT intervention group. We performed
platt scaling [66] to calibrate the decision score and assure that
SVM predicted probabilities match the expected distribution of
probabilities for each class. We calibrated the trained model by
fitting the logistic regression to decision scores of the original HC-
ROP model and applied this to the decision scores of the
intervention data set. The HC-ROP classifier built on the LMU
independent sample was additionally applied to three indepen-
dent samples without any in-between retraining using OOCV in
order to further assess generalizability of our model (Supplemen-
tary Information, Section 1.8, Table S5). We conducted additional
correlational analyses to confirm our results are not biased by
antipsychotic medication intake (Supplementary Information,
Section 1.8, Table S6). We also ran additional correlational analyses
to assess the associations between the psychosis-likeness model
and 1) unhealthy consumption (e.g., cigarettes, alcohol), 2)
variables indicative of socio-economic status (education and
occupation of parents), patients functioning (GAF), traumatic
experiences (Childhood trauma Questionnaire, CTQ [67, 68]) and
age of illness onset (Supplementary Information, Section 1.8,
Table S7).

Statistical analyses of clinical and cognitive data
The following analyses were carried out in Jamovi version 1.1.9
(https://www.jamovi.org/), with a significance level of α= 0.05,
with False Discovery Rate (FDR) correction for multiple compar-
isons [69]. Participants identified as outliers on cognitive domains
(>2 SD) were excluded from further analyses. Demographic
differences between groups were assessed using independent t-
tests for continuous variables and chi-square tests for categorical
variables. Repeated measures ANOVA was used to assess changes
in cognition over time (1) based on SPC, (2) psychosis-likeness
change, and (3) the interaction of SPC and psychosis-likeness
change. Post-hoc analyses investigating the direction of effects
were done using paired-samples t-tests. Effect sizes were reported
using Cohen’s d [70].

RESULTS
Group-level sociodemographic and clinical data
Independent sample (HC-ROP). At baseline there were signifi-
cantly more females in the HC group as compared to the patient
group (df= 1, χ2= 6.39, P= 0.012). Patients had significantly
fewer years of education (T[86]= 2.51, P= 0.014), and lower
premorbid IQ (T[89]= 2.80, P= 0.006) than HC individuals
(Table 1). Patients with ROP showed significantly lower levels of
functioning in all measures at T0 including GAF Disability and

Fig. 1 Proposed model depicting the application of a healthy-to-
psychosis-like spectrum that could be used for monitoring
treatment response to CCT. rsFC correlation matrices are entered
into the SVM classification model to distinguish HC from ROP in an
external sample. Using OOCV, the model is validated on patients
who underwent the intervention sample at two time-points.
Changes in decision scores are compared at the two time-points
(FU-T0) in order to measure the direction of shift across the
hyperplane based on rsFC.
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Impairment (T[88]= 26.91, P < 0.001), GF-R (T[88]= 12.24, P <
0.001), and GF-S (T[88]= 12.24, P < 0.001).

Intervention Sample (maintainers - improvers). At baseline, there
were no significant differences between maintainers and
improvers in demographic characteristics, symptom severity,
functioning, number of days between assessments, training
intensity or antipsychotic medication (P > 0.05) (Table 2). The
performance on all cognitive domains, except for verbal learning
at baseline (T[24]= 2.18, P= 0.04) was balanced between the
maintainers and improvers. We observed a marginally significant
between groups effect on social cognition FU scores (F[1,25]=
4.45, P= 0.046), while controlling for T0 performance (F[1,25]=
4.08, P= 0.055). Although symptoms and functioning improved
over time in all measures, there were no differences based on
SPC (Table S3).

Resting-state functional connectivity prediction performance. The
HC-ROP classifier correctly discriminated patients with ROP from
HC with a cross-validated balanced accuracy (BAC) of 65.54%
(sensitivity= 54.29%, specificity= 76.79%) and was significant
(P= 0.01). Detailed statistics of the classification model are
reported in Table S4. Inspection of the mean feature weights
generated within the CV framework revealed that the rsFC
connections driving correct classification between ROP and HC
were long-range connections between (1) left parietal and right
frontal lobe and (2) bilateral parietal lobe and thalamus, and short-
range connections between (1) left parietal and left occipital area
(2) right temporal and right angular gyrus, (3) left inferior temporal
with right insula and left cerebellum, and (4) bilateral temporal
lobe with bilateral thalamus (Fig. 2, Table S7). The connectivity
patterns were mainly characterized by stronger FC associations in
patients as compared to HC (Fig. 2) whereas only a few fronto-
parietal and temporal-insular connectivities showed stronger
connectivity in HC as compared to ROP patients (Fig. 2).
Applying the ROP-HC model generated within the independent

PRONIA sample to the intervention sample resulted in a model
sensitivity of 65.38% at baseline and 57.69% at follow-up. When
looking across all patients in the maintainer and improver
subgroups, rsFC patterns shifted in the healthy-like direction (i.e.,
a decrease in decision scores from T0 to FU), with no significant
differences in the number of patients whose rsFC shifted in the
healthy-like direction (maintainers= 8, improvers= 8) as opposed
to the psychosis-like direction (maintainers= 6, improvers= 4;
df= 1, χ2= 0.25, P= 0.62). Although there were no significant
differences between maintainers and improvers in psychosis-
likeness changes over time (F[1,25]= 0.96, P= 0.34), the overall
shift to the healthy-like decision scores seems to be driven by a
shift to the healthy-like part of SVM hyperplane in improvers
(ES[Cohen’s d]=−0.35), whereas maintainers showed rather
stable decision score values from T0 to FU (ES[Cohen’s d]= 0.03;
Fig. 3a; Supplementary Information, Fig. S3 [A-B]).
Comparing maintainers and improvers further, we found a

significant interaction between the group and the change in
decision scores on the attentional gain (F[1,23]= 8.13, P= 0.01,
[P= 0.06 with FDR correction]; Fig. 3b; Supplementary Informa-
tion, Fig. S3 [C-D]). However, the effect of the group (F[1,23]=
0.06, P= 0.81) and decision score change (F[1,23]= 0.13, P=
0.72) alone on the attentional change was not significant. We
observed a moderate effect size of improvement in attention
despite psychosis-likeness change in the psychosis-like direction
on the SVM hyperplane only in patients who showed intact SPC
at baseline and maintained peak performance throughout the
CCT (T[13]= 1.26, P= 0.26, ES= 0.51). Contrarily, attentional
gains showed a large effect size in the ROP patients who
showed impaired SPC at baseline only if the rsFC shifted to the
healthy-like side of the SVM hyperplane (T[11]= 2.29, P= 0.06,
ES= 0.87).

DISCUSSION
In this study, we performed a proof-of-concept analysis aimed at
investigating the potential utility of rsFC to assess and monitor
individual neural response to CCT. This is, to the best of our
knowledge, the first study utilizing a machine learning rsFC model
to investigate change of psychosis-likeness in response to CCT and
associate it to changes in cognition and sensory processing.
To achieve this, we employed a model that was built on an

independent sample of LMU ROP patients not undergoing the
intervention, providing us with a quantifiable clinical outcome
measure of psychosis-likeness change across the HC-ROP con-
tinuum with a BAC of 65.54%. This BAC is within the range of
classification accuracies that utilize the resting-state modality for
classifying chronic and first-episode psychosis patients from
healthy controls [71].

Fig. 2 Depiction of the cross-validation ratio-based most reliable
connections driving the classification between HC and ROP. The
inter- and intrahemispheric connectivities of the top 20 features
were extracted using a percentile rank of ~99.99% mapped onto the
brain using BrainNet Viewer. Details of the regions that comprise the
top 20 features are depicted in Table S8 in the Supplement. Blue
lines indicate higher connectivity degree in the HC group; red lines
indicate greater connectivity in the ROP group. Reliability is defined
as the mean value of the SVM weight divided by its standard error
across all the generated models in the cross-validation scheme.

Fig. 3 Decision scores and cognitive changes following compu-
terized cognitive training. a SVM decision score change, reflecting
the degree of psychosis-likeness based on resting-state functional
connectivity (rsFC), in maintainers versus improvers and b atten-
tional change based on shift across the hyperplane using rsFC and
sensory processing change. Higher SVM decision scores reflect more
psychosis-like rsFC. Error bars represent standard error. EMT Emotion
Matching Task, FU follow-up, HC healthy control, ROP recent onset
psychosis, SVM Support Vector Machine, T0 baseline.
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After showing a solid generalizability of this model to the CCT
sample, we followed the notion that various types of sensory [19]
and multimodal plasticity impairments [72] may be differentially
susceptible to interventions [37]. We used EMT as a proxy for
sensory processing and created two patient groups based on the
median split of SPC. We identified a subgroup of ‘improvers’ who
initially presented with sensory processing impairments, however
showed significant improvements in SPC throughout the course of
the CCT. The other subgroup of ‘maintainers’ initially presented
with unimpaired sensory processing and maintained peak
performance throughout CCT at the optimal psychophysical level.
We found that rsFC psychosis-likeness change in these two
subgroups was differentially associated with attentional gains in
response to CCT. Although we did not find a significant difference
between improvers and maintainers in psychosis-likeness changes
over time, the improvers showed a stronger change in psychosis-
likeness to the healthy rsFC pattern. Importantly, these rsFC shifts
seemed to be accompanied by attentional gains in improvers,
while psychosis-likeness change in maintainers appeared com-
pensated by efficient sensory processing that helped this
subgroup nevertheless achieve attentional gains. Improvements
in the attention domain after 10 h training is consistent with
previous findings that improvements in low-order cognitive
functions via drill-and-practice techniques precede gains in
higher-order cognitive domains [73].
Stepping back to understand the resting-state pattern underlying

psychosis-likeness in our original HC-ROP model, we observed
widespread changes in both cortical and subcortical functional
connectivities. We observed reduced rsFC between fronto-parietal
regions and thalamo-cortical areas which successfully distinguished
ROP patients from HC group, that may indicate less disturbed
neuroplasticity in areas of top-down regulatory control, highly
relevant for attentionally demanding cognitive tasks.
The importance of preserved fronto-parietal [13] and thalamo-

cortical connectivity [66] is critical for normal cognitive function-
ing, in particular attention and sequential planning [74, 75], and
relevant for mechanisms of learning in CCT. Our findings support
this notion as the improvers, whose psychosis-likeness decreased
or remained healthy-like, were able to translate cognitive skills
acquired during CCT to attentional gains. Conversely, maintainers
showed greater transfer effects to the domain of attention despite
preserved psychosis-like rsFC, possibly due to their efficient
sensory processing at baseline that served as cognitive reserve
[14]. Our results suggest that improvement in attention may
depend on an association between more healthy-like whole-brain
rsFC patterns and efficient sensory processing during CCT and
demonstrates feasibility of using resting-state as a valid biomarker.
In line with our work, a recent fMRI study using resting-
state connectivity networks was able to predict medication‐class
of response in hard-to-diagnose patients [76], further supporting
the utility of resting-state fMRI in the ‘real-world’ clinical context.
In the recent meta-analysis on the utility of resting-state as
biomarker, the authors warn about its moderate test-retest
variability, while at the same time highlighting the complexity of
its application and circumstances that improve the reliability of
this neuroimaging modality [40, 77]. Future studies are necessary
to determine the exact methodological conditions necessary to
optimize the utility of neuroimaging to reliably trace the response
to pharmacological and non-pharmacological interventions.
Several limitations of the present study need to be considered.

First, the current study used a relatively short CCT as we wanted to
keep the intervention duration comparable to the duration of
clinical treatment. Our intention was to provide greater resem-
blance to the real-world clinical setting that appears common in
many other health centers across Europe [78], and provides a
strong clinical care framework due to the initial stay of the
patients at the ward or frequent clinical checks. However, we
cannot claim that ROP patients who did not respond with an

improvement of rsFC pattern and did not show efficient SPC
learning would not achieve neural ‘recovery’ associated with
enhancement of cognition with a slightly different form of
intervention, longer duration, or implementing more diverse
protocols [7]. Second, we attempted to operationalize sensory
processing during CCT by using a median split to categorize
patients into improvers and maintainers. However, our approach
may limit the generalizability of our findings and needs to be
further investigated in future studies. Third, while the CCT in this
study uses social stimuli, we have not observed any interaction
between psychosis-likeness change and social cognition. While we
measured performance on facial affect recognition, which
represents only one domain of social cognition, a greater number
of social cognitive measures would be needed to capture social
cognition improvement at a fine-grained level [79]. Fourth, though
we were not able to assess long-term effects of the intervention in
an additional follow-up session, investigating durability effects of
the intervention would be crucial for future studies. Finally,
though we followed the generalizability rule in MVPA, including
an independent sample in the study to generate the model and
tested the generalizability of this model to three additional
independent samples across multiple sites, future studies replicat-
ing our findings in multi-site cohorts with larger numbers of
participants are warranted.
Prospectively, this MVPA approach may be integrated into

individual early identification and intervention programs, thus
resulting in a likely cheaper and more effective personalized psy-
chiatry application [80, 81]. Psychotic disorders are highly hetero-
geneous at many levels, from biological pathways to clinical
presentation and usage of the neuromonitoring approach may lead
to faster identification of individuals with shared biological path-
ways that show a greater potential to improve through CCT [82].
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