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Polygenic risk for Alzheimer's disease shapes hippocampal
scene-selectivity
Hannah L. Chandler1, Carl J. Hodgetts1, Xavier Caseras2, Kevin Murphy3 and Thomas M. Lancaster1,2,4

Preclinical models of Alzheimer’s disease (AD) suggest APOE modulates brain function in structures vulnerable to AD
pathophysiology. However, genome-wide association studies now demonstrate that AD risk is shaped by a broader polygenic
architecture, estimated via polygenic risk scoring (AD-PRS). Despite this breakthrough, the effect of AD-PRS on brain function in
young individuals remains unknown. In a large sample (N= 608) of young, asymptomatic individuals, we measure the impact of
both (i) APOE and (ii) AD-PRS on a vulnerable cortico-limbic scene-processing network heavily implicated in AD pathophysiology.
Integrity of this network, which includes the hippocampus (HC), is fundamental for maintaining cognitive function during ageing.
We show that AD-PRS, not APOE, selectively influences activity within the HC in response to scenes, while other perceptual nodes
remained intact. This work highlights the impact of polygenic contributions to brain function beyond APOE, which could aid
potential therapeutic/interventional strategies in the detection and prevention of AD.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common form of dementia
and is a prominent cause of mortality in older populations.
Genome wide association studies (GWAS) demonstrate that AD is
highly polygenic, explained by the cumulative effect of thousands
of single nucleotide polymorphisms (SNPs) [1, 2]. However, the
impact of these SNPs on human brain function is still poorly
understood, especially in large-scale cohorts of young adults
where a more detailed characterisation of the aetiology of AD is
needed to determine the effectiveness of possible therapeutic
targets.
Population studies now suggest a genetic overlap between AD

and common genetic variation that influences cognitive ability
across the lifespan [3, 4], suggesting that AD risk alleles also
influence the cognitive systems that support memory and
intelligence. Several preliminary studies have explored the
influence of individual single variants identified via AD GWAS such
as loci within APOE, CLU or PICALM on brain function. This work
broadly suggests that variation within these genes are associated
with task-related brain activity, particularly in sub/cortical regions
implicated in early AD associated Braakian atrophy including the
hippocampus, entorhinal and cingulate cortices [5–11].
The hippocampus (HC) is one of the most studied anatomical

regions in AD, associated with early and progressive atrophy in
those at risk for developing the disease [12–14]. Evidence suggests
that an increase in genetic risk for developing AD is associated
with not only structural, but also functional brain alterations.
Specifically, alterations in blood oxygen level dependent (BOLD)
fMRI have been observed in AD patients and individuals who
possess an APOE-ɛ4 allele [5, 6, 11]. Task-based fMRI paradigms
have revealed alterations in BOLD response in individuals who

possess a copy of the APOE ɛ4 allele. Yet very little attention has
been paid to the wider cumulative impact of other common risk
variants in AD. Specifically, little research has explored the relative
contribution of the wider polygenic architecture that contributes
to AD genetic risk on HC function.
Although the HC has largely been associated with episodic and

spatial memory, emerging theoretical models of HC function
highlight a critical role during complex scene processing across
both memory and perception domains [15–17]. Though scene
encoding is not considered solely a function of the HC [18–20], the
HC is a key component in a wider circuit of brain regions affected
in AD [21] where BOLD responses for scenes may be altered
compared to other stimulus categories not typically associated
with the HC (bodies, faces, tools). While these functions are
classically associated with specific brain structures, including the
HC, it is still unclear if BOLD in response to these types of tasks is
altered in those with a genetic predisposition to developing AD,
and if this contribution is based on the presence of APOE ɛ4 or the
broader cumulative impact of common AD-related genes.
Demonstrating a relationship between genetic risk and HC BOLD
in response to scenes will provide grounding evidence that the
wider, cumulative effect of multiple common risk genes should be
considered in relation to brain function. This will help to inform
preclinical models that predict the development of AD. Although
associations between spatial/scene processing and genetic risk for
AD (such as APOE ɛ4 dosage [22]) have been documented,
working toward a larger polygenic model will provide more power
for assessing the broader relationship between genes that confer
risk and brain function.
In the present study, we combine imaging and genetic

data from healthy individuals recruited by the Young Human
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Connectome Project (YA-HCP) to investigate the combined impact
of AD common risk alleles on HC activity as assessed with BOLD
during scene encoding in young healthy individuals (aged 22–35).
Based on prior work that evidences hyperactivity in pre-
symptomatic individuals at risk of developing AD [23], we predict
a positive association between scene related HC BOLD and
genetic risk assayed by AD-PRS (excluding the APOE region) in this
young healthy cohort. In this study, AD common allele risk is
measured using (i) an AD-polygenic risk score (AD-PRS) (excluding
the APOE region with chromosome 19) and (ii) the presence/
absence of APOE ɛ4. To assay scene encoding we use the
perceptual categories embedded within the YA-HCP n-back
paradigm, averaging across memory load. We suggest that scene
processing provides a locus capable of probing HC function in
those at genetic risk for developing AD. We perform post-hoc
follow up studies to (i) search for AD-PRS and APOE effects within
hippocampal voxels during scene encoding and (ii) repeat this
analysis within an expanded search space (whole-brain level). We
anticipate that these observations will elucidate the impact of the
common genetic risk architecture for AD on hippocampal and/or
scene encoding BOLD in asymptomatic individuals. Within this
study we aim to provide grounding evidence for the wider
cumulative effect of multiple common AD risk genes to inform
preclinical models that predict the development of AD.

METHODS
Sample
Participants were drawn from the March 2017 public data release
from the YA-HCP; N= 1200. Participants were aged from 22 to 35,
for all inclusion/exclusion criteria see Van Essen et al. [24]. Briefly,
the study excluded individuals with a history of psychiatric
disorder, substance abuse, neurological or cardiovascular disease
and associated hospitalisation or long-term (>12 months) phar-
macological/behavioural treatment. Each participants provided
written informed consent. All subject recruitment procedures and
informed consent forms (including consent to share de-identified
data), were approved by the Washington University in St. Louis
Institutional Review Board (IRB). Participants were excluded from
the current analyses if they lacked good-quality structural
magnetic resonance imaging data (for registration purposes), or
had missing relevant interview/questionnaire data (Table 1; for
demographic details). The complete imaging sample size, includ-
ing related individuals was N= 608, which has 80% power
to detect relatively small effects (R2 > 0.012). For further informa-
tion on the HCP pedigree/kinship structure see http://www.
humanconnectome.org/storage/app/media/documentation/
s1200/HCP_S1200_Release_Reference_Manual.pdf.

Genotyping and AD-PRS creation
All YA-HCP data are publicly available, including genome-wide
genotype data to be distributed through dbGAP. Quality controls

was implemented in PLINK v1.9 [25]. Briefly, single nucleotide
polymorphisms (SNPs) were excluded where the minor allele
frequency was less than 1%, if the call rate was less than 98%, or if
the χ2 test for Hardy-Weinberg equilibrium had a P value less than
1 × 10−4. Individuals were excluded for ambiguous sex (genotypic
sex and phenotypic sex not aligning or genotyping completeness
less than 97%. A total of 1,137,480 variants and 1119 individuals
were considered for AD-PRS creation. To account for the
extended twin design, we created a kinship matrix and derived
the top 20 principle components (PCs) from the linkage
disequilibrium pruned data set and included PCs in all AD-PRS
analysis. Participants that did not match the race of the discovery
sample GWAS were excluded from the analysis. AD-PRS were
created using the ‘score’ command in PLINK v1.9 [26] via the
PRSice v1.25 software package [27]. AD genetic risk was
estimated using publicly available results data from an interna-
tional GWAS [2]. SNPs (single nucleotide polymorphisms) were
removed from the AD GWAS data if they had a low MAF (minor
allele frequency < 0.01) and were subsequently pruned for LD
using a stringent clumping strategy (–r2 0.1, –kb 500). As SNPs
may be correlated, pruning the SNPs ensured all SNPs included in
each AD-PRS model were independent. The entire APOE region
(from-kb 44,400 to -kb 46,500) was removed during the
consideration of alleles for AD-PRS. We chose initially choose a
liberal AD-PRS at PT < 5 × 10−1, previously been shown to be most
predictive of AD in case-control studies [28, 29]. In a post-hoc
analysis, we create a series of P-threshold across a range of
thresholds that have also been shown to associate with AD
neuroimaging phenotypes [30, 31]. Individual APOE status was
determined by the absence/presence of an ɛ4 allele calculated via
rs7412 and rs429358.

Description of fMRI paradigm
The scene—encoding BOLD signal was measured via fMRI during
a scene-localiser paradigm, embedded in an n-back working
memory task, as previously described [32]. Participants completed
an n-back (0 and 2 back) task with multiple visual conditions
(scenes, body parts, tools, faces). Within each run, 1/2 of the blocks
use a 2-back working memory task (respond ‘target’ whenever the
current stimulus is the same as the one presented two stimuli
previously) and 1/2 use a 0-back working memory task (a target
cue is presented at the start of each block, and the person must
respond ‘target’ to any presentation of that stimulus during the
block). A 2.5 s cue indicates the task type (and target for 0-back) at
the start of the block. Each of the two runs contains 8 task blocks
(10 trials of 2.5 s each, for 25 s) and 4 fixation blocks (15 s each).
On each trial, the stimulus is presented for 2 s, followed by a
500ms ITI. Each block contains 10 trials, of which 2 are targets,
and 2–3 are non-target lures (e.g., repeated items in the wrong
n-back position, either 1-back or 3-back). Our principal contrast
was BOLD averaged across n-back load for scenes > average
(faces, bodies and tools).

Table 1. Descriptive/demographic statistics for individuals included in final mixed linear regression models.

Combined sample APOE ɛ4 (−) N= 462 APOE ɛ4 (+) N= 146 P

Gender M= 285/F= 323 M= 215/F= 247 M= 70/F= 76 0.84

Mean SD Mean SD Mean SD

Age 28.93 3.63 28.76 3.61 29.47 3.69 0.05

SSAGA_Education 15.04 1.70 15.02 1.73 15.10 1.61 0.60

Frame-wise displacement 0.09 0.03 0.09 0.03 0.09 0.04 0.57

HC Volume (mm3) 4497.00 440.73 4485.72 437.79 4533.67 449.53 0.26

X2= chi squared test for gender. All other demographics were tested via two-sample t-test
M mean, SD standard deviation
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BOLD parameter acquisition
BOLD parameter estimate acquisition YA-HCP sample Individual,
pre-processed task-fMRI (tfMRI) directories for the n-back task
were downloaded from the WUMinn HCP Data-1200 Subjects+ 7
T data release at https://db.humanconnectome.org/, package
type=MSMSulc-+MSM-All. All preprocessing steps and pre-
liminary analysis were performed in FSL [33] and have previously
been reported [32]. Briefly, the HCP ‘fMRIVolume' pipeline
performs gradient unwarping, motion correction, fieldmap
unwarping and grand mean intensity normalisation on the four-
dimensional (4D) time series. These volumes are segmented
(Brain Boundary Registration), registered to the T1 anatomical
volume using nonlinear transformation (FNIRT) and warped to
standard (MNI152) space. Parameter estimates were estimated for
a pre-processed time series using a general linear model (GLM)
using FMRIB's improved linear model (FILM) with autocorrelation
correction. Predictors were convolved with a double gamma
canonical hemodynamic response function to generate regres-
sors. Temporal derivatives of each regressor were added to the
GLM as covariates of no interest. Parameter estimates (BOLD) for
the principal contrast (scenes > other) were available for 902
individuals from the whole sample (N= 1206). We chose this
contrast to establish potential relationships specifically with

scenes, rather than any other visual stimuli within the paradigm
to estimate and probe HC BOLD. Using a custom series of
wb_commands from the connectome workbench (https://www.
humanconnectome.org/software/connectome-workbench.html),
we then extracted BOLD parameter estimates from individual
subject-pre-processed data (scenes > other) for the bilateral
hippocampus as defined by the Harvard-Oxford Subcortical
Structural Atlas.

Statistical inferences
On the basis of prior recommendations [34], we first employed
linear mixed effects models, estimated in R 3.3.2 (https://www.r-
project.org/) using the lme package [35]. Both AD-PRS and APOE
ɛ4 were entered into the model as fixed effects along with
covariates including sex, age, education level (SSAGA_Educ),
and head motion (average frame-wise displacement across the
task). To account for population stratification, we also included
20 principle components (from a version of the genotype
dataset which had been pruned for linkage disequilibrium) as
covariates. To account for the familial structure in the sample, a
sparse kinship matrix was included in each of the seven LME
models using the ‘lme4qt’ package [21]. Minor allele frequencies
were comparable between our training and test data and our

Fig. 1 One-sample t-test for scenes>other (bodies, faces, tools) across whole brain, corrected for kinship. All active voxels are significant
after family wise error correction (PFWE < 0.05). T-statistic range= 4.8–56.8.
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AD-PRS model was normally distributed suggesting minimal
between sample heterogeneity [36]. Sample outliers were
removed from BOLD parameter estimates using the interquartile
range (IQR) outlier labelling rule (1.5 × IQR (Q3–Q1)) as pre-
viously described [37]. After the removal of statistical outliers,
HC BOLD was normally distributed (Shapiro test, P > 0.05).
This method of outlier detection was also used for all post-hoc
analysis. The AD-PRS predictors did not show evidence of
collinearity with other covariates (variance inflation factor > 1.15
in all cases).

Voxel-wise analysis
In order to ascertain regional hippocampal effects, we then
performed voxel-wide search of the hippocampus using permuta-
tion analysis of linear models (PALM, [38]). Contrasts of parameter
estimates for [scenes > other] were merged for all participants
(N= 606) into a 4D cifti file. A separate 4D image of the bilateral
hippocampus parameter estimates (for scenes > other) was then
created using the HCP command line toolbox “wb_command”.
The corresponding design matrix included the same regressors as
the average hippocampal BOLD analysis including: AD-PRS, APOE
status, age, sex, education, frame-wise displacement and the 20
genetic principle components to account for population stratifica-
tion. To control for the HCP kinship/pedigree structure during tail
approximation permutation testing (N= 5000) [39], we created
exchangeability blocks [40] for the participants using code
available at https://raw.githubusercontent.com/andersonwinkler/
HCP/master/share/hcp2blocks.m and corrected for the family wise
error using threshold free cluster enhancement (TFCE: [41]).

Negative control analysis
We further aimed to quantify the specificity of AD genetic risk—
HC BOLD relationships. We therefore extracted the average
parameter estimates from (i) two other bilateral cortical regions
in the scene > other network including a contiguous cluster of
the (a) parahippocampal gyrus—transverse occipital sulcus
(PHG-TOS) and (b) the retrosplenial cortex (RSC) and (ii) bilateral
key cortical region for (c) body > other network (extra-striate
body area: EBA); (d) face > other network (fusiform face area;
FFA) and (e) object > other (lateral occipital cortex: LOC) and
repeated the linear mixed effect model analysis [42–47].
All clusters were derived from a 1 sample t-test of the combined
sample with a stringent threshold to delineate individual
clusters (t-statistic > 15.5, in all cases). Together, these control
analyses permitted us to quantify the specificity of the (i) region
and (ii) the contrast.

RESULTS
Whole group effects of BOLD for scenes > other
A one-sample t-test (accounting for kinship structure) across the
final sample (N= 608) confirmed bilateral scene-related activity in
the HC (Fig. 1). Critically, and consistent with previous work [15],
significant voxels were located in the anterior-medial region
within the hippocampus (PFWE-WHOLE-BRAIN < 0.05) in response to
scenes. Other regions including the retrosplenial cortex (RSC) and
parahippocampal cortex (PHG) were also responsive to scenes in
contrast to all other stimuli; faces, bodies, tools) as previous
observed [15, 19, 20, 42, 48].

Genetic effects of HC-BOLD during scenes > other
After quality control procedures, AD-PRS was regressed against
average bilateral hippocampal BOLD (scene > other). After con-
trolling for fixed effects (covariates) and familial confounds
(random effects of familial environmental and genetic correla-
tions), we identified a positive association between AD-PRS and
HC scene BOLD (β= 0.102; P= 0.016). We observed similar
associations at other liberal p-thresholds, but not conservative
ones (Table 2). We observed no significant associations between
performance (n-back accuracy) and APOE ɛ4 status or AD-PRS
(P > 0 .05, in all cases).

Negative control results
We repeated the linear-mixed effect model (as per Table 2) in (i)
two other cortical regions associated with increased BOLD for
scenes > other and (ii) three cortical regions associated with
increased BOLD for bodies, faces and objects (EBA, FFA, LOC,
receptively). We found no effect of AD-PRS or APOE ɛ4 status on
any of these cortical regions (Fig. 2).

Genetic effects in voxel-wise HC analysis
The voxel-wise search within the bilateral hippocampus identified
bilateral clusters of voxels across the hippocampus that were
significantly associated with AD-PRS after correction for the family-
wise error. These voxels were proximal to grey matter within the
anterior-medial HC (Fig. 3). We did not find any further brain-wide
associations between AD-PRS or APOE and BOLD that survived
family wise error correction.

DISCUSSION
We sought to explore whether common AD risk alleles (identified
via GWAS) contribute to variation in HC BOLD during scene
encoding in young healthy individuals. While several studies have

Table 2. Linear regression models for hippocampal BOLD (arbitrary units) and volume (mm3).

HC BOLD (a.u.) HC volume (mm3)

Model SNPs β 95% CI P β 95% CI P

APOE+ ɛ4 2 −0.064 −0.251 0.123 0.501 0.022 −0.132 0.176 0.776

pT_5 × 10−8 21 −0.032 −0.113 0.048 0.431 −0.041 −0.110 0.027 0.237

pT_0.001 737 0.013 −0.070 0.096 0.757 −0.054 −0.124 0.016 0.133

pT_0.005 2642 0.071 −0.011 0.153 0.088 −0.086 −0.156 −0.016 0.016

pT_0.01 4747 0.057 −0.026 0.140 0.178 −0.082 −0.152 −0.012 0.022

pT_0.05 17,297 0.073 −0.012 0.159 0.091 −0.032 −0.103 0.039 0.377

pT_0.1 29,718 0.073 −0.010 0.157 0.086 −0.004 −0.074 0.065 0.902

pT_0.2 49,658 0.092 0.009 0.175 0.029 −0.001 −0.071 0.070 0.987

pT_0.5 91,417 0.102 0.019 0.186 0.016 −0.012 −0.082 0.057 0.727

pT_1 133,305 0.104 0.020 0.187 0.015 −0.012 −0.082 0.057 0.725

Standardised beta reflects adjusted beta coefficients (controlling for genetic and demographic confounds) and 95% confidence intervals for each estimate.
AD-PRS= Alzheimer’s disease polygenic risk score. ɛ4+ indicates the presence of an APOE ɛ4 allele. HC BOLD (a.u.) regressions also controlling for HC volume

Polygenic risk for Alzheimer's disease shapes hippocampal scene-selectivity
HL Chandler et al.

1174

Neuropsychopharmacology (2020) 45:1171 – 1178

https://raw.githubusercontent.com/andersonwinkler/HCP/master/share/hcp2blocks.m
https://raw.githubusercontent.com/andersonwinkler/HCP/master/share/hcp2blocks.m


linked AD-PRS to memory [49–51] and structural brain changes
across the lifespan [52–54], this work is amongst the first to
quantify the relationships between AD-PRS and functional brain
activity, specifically via task-based fMRI in AD vulnerable regions.
More specifically, we used an embedded category localiser to

target HC function in a large sample (N= 608), powered to detect
relatively small effects. We identify a positive relationship between
scene selective HC BOLD (a key node in the scene-processing
network) and AD-PRS in young healthy individuals, decades before
the onset of potential symptoms. We further demonstrate that this
observation was (a) specific to the HC and (b) selective to scene
processing. That is, no significant associations were observed
between AD-PRS and brain activity for other functional contrasts
(bodies, faces, tools) within their respective networks. This is one of
the first studies to demonstrate an association between HC BOLD
and AD-PRS in young individuals at such a scale.
Our findings support a hypothesis that the broader AD

polygenic architecture may influence AD sensitive markers of
brain function such as HC BOLD. Our findings are also in line with
established theoretical models of AD where hyper-activation is
observed in young cohorts at risk of developing AD leading to a
steep and steady decline in brain function/connectivity as
individual’s transition through Braak stages [23, 55]. While further
investigation is required, we suggest that the positive association
between AD-PRS and HC BOLD may reflect downstream mechan-
isms of neuronal hyper-activation. That is, the higher someone’s
cumulative genetic risk for developing AD, the higher the
neuronal hyper-activation. Our results also broadly conform to
prior models that suggest the HC is susceptible and vulnerable to
the pathogenesis in AD (12–14), providing support that HC
function in individuals with increased AD risk is altered in early life
processes. While we found no overt effects of AD genetic risk
on task performance, we cannot exclude the possibility that
altered hippocampal activity may reflect disruptions in other
hippocampal-dependent cognitive processes such as navigation
efficiency [56]. Future prospective studies that comprehensively

assess modes of co-variation between hippocampal—dependent
behaviour and brain function will help establish overt conse-
quences of aberrant hippocampal BOLD. Our findings highlight
that considerations about the broader polygenic architecture of
AD should be explored to brain imaging studies of AD genetic risk.
While BOLD is considered an indirect measure of neuronal

activity, it is a signal derived from a number of physiological
processes and any disruption in vascular physiology and tissue
oxygenation may pose a risk to neural responses during functional
tasks. While we are unable to test this hypothesis within the
current dataset, we suggest future studies focus on cerebrovas-
cular response beyond BOLD to elucidate the precise physiological
alterations that underpin task-related changes in AD risk. We
suggest this hypothesis needs to be further assessed with more
quantitative MRI methods to measure brain activity physiology
more directly than BOLD. Our results may reflect an altered
cerebral regulatory response to the scene-processing task in the
HC or an alteration in metabolic function and oxygen supply/
demand to the HC in response to scenes. Early evidence already
suggests that there are alterations in task-dependent hippocam-
pal cerebrovascular reactivity in young carriers of APOE ɛ4 [57].
Our preliminary data also suggests that AD-PRS may influence
resting cerebral blood flow [30], warranting future studies linking
AD-PRS to MRI parameters such as the cerebral metabolic rate of
oxygen (CMRO2) and oxygen extraction fraction (OEF) to establish
the regional, molecular impact of AD-PRS on cerebro-vasculature
and/or brain metabolism.
We did not identify any association between APOE ɛ4 status and

scene encoding in the HC or any other perceptual stimulus
category (bodies, faces, tools) in their respective network. We
therefore suggest that scene selective HC BOLD is not associated
with presence/absence of the APOE ɛ4 allele in young healthy
individuals but rather associated with the cumulative impact of
common AD risk genes identified via GWAS. Our voxel wise
analysis of AD-PRS within the HC revealed a bilateral cluster within
the region of the anterior-medial HC for in response to the scenes

Fig. 2 Negative control results: standardised beta-coefficients (Y-axis) for AD-PRS and APOE ɛ4 status (controlling for demographic and
genetic confounds) for place selective cortical regions (top row: within hippocampus (HIPP); parahippocampal gyrus—transverse
occipital sulcus (PHG-TOS); and the retrosplenial cortex (RSC). BOLD selective for bodies, faces and tools were assessed within the extra-
striate body area (EBA); fusiform face area (FFA) and the lateral occipital cortex (LOC), respectively. Error bars reflect 95% confidence intervals
of the beta coefficient. Figure includes +/−95% confidence intervals.
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more than any other category contrast of stimulus (tools, bodies,
faces). High-resolution 7 T MRI has identified anterior-medial
subunits that are thought to be more involved in scene encoding
than others, namely the subiculum [58]. The subiculum has
emerged as a key region of the HC hypothesised to be most
susceptible to pathology when transitioning from mild cognitive
impairment (MCI) to AD [59]. The subiculum regions may therefore
be most susceptible to alterations when assessing the polygenic
impact on task specific scene encoding in the HC and may be a
useful functional marker to assess HC changes in those with
increased risk for developing AD. However, it is important to note
that 3 T MRI is not optimal to dissociate between HC subfields
at this level, therefore we suggest that future work aims to
reproduce these preliminary findings with a more HC focused
high-resolution fMRI sequence at 7 T.
Our findings should also be considered in light of the following

limitations. First, we note that the YA-HCP sample is ethnically
heterogeneous. While we minimise population effects by (i)
excluding non-Caucasian participants and (ii) including 20 genetic
principle components as covariates, we cannot fully reject
population stratification effects. Second—while the pedigree
structure was modelled (via kinship matrix and exchangeability
blocks), we cannot fully exclude residual kinship structure that
may influence our results. We also note that we only observed
associations between AD-PRS and HC BOLD at the liberal
P-thresholds that capture maximal variability in AD risk models
[29]. This would suggest that our association was explained by the
cumulative effects of thousands of low confidence alleles

(estimated at liberal p-thresholds), rather than well-established
AD risk alleles (such as those that surpass GWAS significance).
While this is consistent with the polygenic model of complex traits
[60], it may implicate a role for complex polygenic traits that share
a genetic architecture with AD such as neural (e.g., cognitive
ability, educational attainment [2]) and/or vascular process (e.g.,
blood plasma lipid and cholesterol metabolism [61]). Future
genetic tools will help to refine future polygenic approaches to
separate genetically correlated heritable traits [62].
In conclusion, our findings suggest that the cumulative impact

of a large combination of AD risk alleles is associated with altered
HC BOLD during scene encoding, which may predispose future
risk to AD. The observations provide additional evidence that
genetic risk for AD manifests decades before the onset of
symptoms, in medial temporal lobe structures expressing the
earliest molecular evidence of pathology. Our findings suggest
task-dependent hippocampal BOLD may be useful in elucidating
potential therapeutic and interventional strategies that may aid in
detection and prevention of AD.
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