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Amphetamine disrupts haemodynamic correlates of prediction
errors in nucleus accumbens and orbitofrontal cortex
Emilie Werlen1, Soon-Lim Shin1, Francois Gastambide2, Jennifer Francois2, Mark D. Tricklebank3, Hugh M. Marston 2, John R. Huxter2,
Gary Gilmour2 and Mark E. Walton1,4

In an uncertain world, the ability to predict and update the relationships between environmental cues and outcomes is a
fundamental element of adaptive behaviour. This type of learning is typically thought to depend on prediction error, the difference
between expected and experienced events and in the reward domain that has been closely linked to mesolimbic dopamine. There
is also increasing behavioural and neuroimaging evidence that disruption to this process may be a cross-diagnostic feature of
several neuropsychiatric and neurological disorders in which dopamine is dysregulated. However, the precise relationship between
haemodynamic measures, dopamine and reward-guided learning remains unclear. To help address this issue, we used a
translational technique, oxygen amperometry, to record haemodynamic signals in the nucleus accumbens (NAc) and orbitofrontal
cortex (OFC), while freely moving rats performed a probabilistic Pavlovian learning task. Using a model-based analysis approach to
account for individual variations in learning, we found that the oxygen signal in the NAc correlated with a reward prediction error,
whereas in the OFC it correlated with an unsigned prediction error or salience signal. Furthermore, an acute dose of amphetamine,
creating a hyperdopaminergic state, disrupted rats’ ability to discriminate between cues associated with either a high or a low
probability of reward and concomitantly corrupted prediction error signalling. These results demonstrate parallel but distinct
prediction error signals in NAc and OFC during learning, both of which are affected by psychostimulant administration.
Furthermore, they establish the viability of tracking and manipulating haemodynamic signatures of reward-guided learning
observed in human fMRI studies by using a proxy signal for BOLD in a freely behaving rodent.

Neuropsychopharmacology (2020) 45:793–803; https://doi.org/10.1038/s41386-019-0564-8

INTRODUCTION
The world is an uncertain place, where behaviour of animals must
continuously change to promote optimal survival. Learning to
predict the relationship between environmental cues and significant
events is a critical element of adaptive behaviour. It is hypothesised
that adaptive behaviour depends upon comparisons of neural
representations of cue-evoked expectations of events with events
that actually occurred. Mismatch between these two representations
is defined as a prediction error, and is likely a vital substrate by
which accuracy of ensuing predictions about cue-event relationships
can be improved. Prediction errors related to receipt of reward have
been strongly associated with dopaminergic neurons and their
projections to frontostriatal circuits [1–4]. In rodents and humans,
presentation of reward-predicting cues causes an increase in
dopaminergic neuron activity and dopamine release in terminal
regions, not only in proportion to the expected value of the
upcoming reward but also to the deviation from that expectation
when the reward is actually delivered [5–12]. Furthermore,
experimental disruption of dopaminergic transmission can impair
formation of appropriate cue–reward associations [13–15].
From a human perspective, elements of reward learning can be

disrupted in a variety of neuropsychiatric conditions where

dopaminergic dysfunction may play a central role [16–19]. For
example, patients with major depressive disorder or schizophrenia
can be insensitive to reward and display impairments in reward-
learning behaviours [20–24]. Neuroimaging studies suggest that
activation of parts of ventral striatum and frontal cortex, or
changes in functional connectivity with these regions, may be an
important neurophysiological correlate of reward-learning impair-
ments [24–29]. However, not all studies show the same patterns of
changes. e.g., ref. [30], and there is still uncertainty over whether
the blunting of neural responses reflects a primary aetiology in
these disorders. While the potential links between dopaminergic
dysregulation, disrupted neural signatures of reward-guided
learning and neuropsychiatric symptoms are manifest, strong
direct evidence is currently lacking.
To help bridge this gap, we used constant-potential ampero-

metry to monitor haemodynamic responses simultaneously in
the nucleus accumbens (NAc) and orbitofrontal cortex (OFC) in
rats performing a reward-driven, probabilistic Pavlovian learning
task. Both NAc and OFC regions receive dopaminergic input, and
have been previously implicated in representing the expected
value of a cue to guide reward-learning behaviour [31, 32].
Amperometric tissue oxygen [TO2] signals likely originate from
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equivalent physiological mechanisms as fMRI BOLD signals
[33–35], allowing cross-species comparisons of behaviourally
driven haemodynamic signals in awake animals. The aim of this
study was to define amperometric signatures of cue-evoked
expectation of reward and prediction error in these regions and
then investigate how they are modulated by administration of
amphetamine. Amphetamine is known to modify physiological
dopamine signalling [36], and in humans, even a single dose of a
stimulant like methamphetamine can cause an increase in mild
psychotic symptoms [37, 38]. While amphetamine can promote
behavioural approach to rewarded cues [39], it can also impair
conditional discrimination performance [40] and the influence of
probabilistic cue–reward associations on subsequent decision-
making [41]. We hypothesised that amphetamine would disrupt
discriminative responses to cues during performance of a
probabilistic Pavlovian task, with concomitant changes to the
haemodynamic correlates of reward expectation and prediction
error in the NAc and OFC.

METHODS
See SI for detailed methods
Animals. All experiments were conducted in accordance with the
United Kingdom Animals (Scientific Procedures) Act 1986. Adult
male Sprague Dawley rats (Charles River, UK) were used in the
present studies (n= 36). Four animals did not contribute to the
behavioural dataset owing to poor O2 calibration responses, and
the data from an additional two animals could not be included
owing to a computer error. During testing, they were maintained
at >85% of their free-feeding weight relative to their normal
growth curve. Prior to the start of any training or testing, all
animals underwent surgical procedures under general anaesthesia
to implant carbon paste electrodes targeted bilaterally at the NAc
and OFC.

O2 amperometry data recording. O2 signals were recorded
from the NAc and OFC by using constant-potential amperometry
(–650 mV applied for the duration of the session) as described
previously [35, 42].

Probabilistic Pavlovian conditioning task. The task was a prob-
abilistic Pavlovian learning task performed in standard operant
chambers. Each trial consisted of a 10-s presentation of one of two
auditory cues (3-kHz pure tone at 77 dB or 100-Hz clicker at 76 dB)
followed immediately by either delivery or omission of reward
(4 × 45mg of sucrose food pellets). One of the auditory cues
(CSHigh) was followed by reward delivery on 75% of trials, the
other (CSLow) was rewarded on 25% of trials. Each session
consisted of a total of 56 cue presentations, with an average
intertrial interval of 45 s (range 30–60 s). Standard training took
place over nine sessions and session 10 consisted of the drug
challenge (see Fig. S1).

Pharmacological manipulations. D-amphetamine sulfate (Sigma,
UK) was dissolved in 5% (w/v) glucose solution, and pH adjusted
towards neutral with the dropwise addition of 1 M NaOH as
necessary. Amphetamine was dosed at 1 mg/kg (free weight) via
the intraperitoneal route.

Behavioural modelling. Head entries during the 10-s cue pre-
sentation were modelled by using variations of a Rescorla–Wagner
model (Rescorla & Wagner 1972). We started with a model with a
single free parameter, the learning rate α, and compared this
against other models that also included free parameters specifying
(a) cue-specific learning rates (i.e., a cue salience term, β); (b)
separate learning rates for rewarded αpos and nonrewarded trials
αneg and either (c) cue-independent k or (d) cue-specific uncondi-
tioned magazine responding, kClicker and kTone. To capture

additional trial-by-trial variance, we also included either trial-
specific or recency-weighted pre-cue response rates. To compare
the models, we used the Bayesian information criterion (BIC), which
penalises the likelihood of a model by the number of parameters
and the natural logarithm of the number of data points.

Data analysis
Behaviour: We analysed the average number of head entries into
the food magazine during presentation during either the CSHigh or
CSLow cues during the 9 days of training and then during the pre-
drug day (day 9 of training) with the drug challenge day.

Amperometry: We performed two sets of complementary
analyses: (i) model-free analyses, where we investigated the
average signals in NAc and OFC during cue presentation or in the
30 s after outcome delivery over the course of learning and after
amphetamine administration, and (ii) model-based analyses
where we regressed the same signals against estimates from
our computational model using the model with the lowest BIC
score (Fig. 1d).

RESULTS
Behavioural performance during probabilistic learning
We trained rats on a two-cue probabilistic Pavlovian learning
paradigm. One cue—CSHigh—was associated with reward delivery
on 75% of trials and the other—CSLow—on 25% of trials (Fig. 1a).
As can be observed, animals learned to discriminate between the
cues, increasingly making magazine responses during presenta-
tion of the CSHigh but showing little change in behaviour upon
presentation of CSLow as training progressed (main effect of CS:
F1,27= 39.92, p < 0.001; CS × day interaction: F2.63,70.92= 6.12, p=
0.001) (Fig. 1b, Fig. S2). Unexpectedly, however, there was also a
substantial and consistent influence of the counterbalancing
assignment on responding (CS × cue identity interaction: F1,27=
48.17, p < 0.001). Specifically, follow-up pairwise comparisons
showed that the animals in Group 1, where CSHigh was assigned
to be the clicker cue and CSLow the pure tone (“CL1-T2”) exhibited
strong discrimination between the cues throughout training (p <
0.001; Fig. 1c). By contrast, rats in Group 2 with the opposite CS—
auditory cue assignment (“T1-CL2”), did not show differential
responding to the cues in spite of the different reward
associations (p= 0.66).
To better understand how the cue identity was influencing this

pattern of responding, we formally analysed how well different
simple reinforcement learning models could describe individual
rats’ Pavlovian behaviour. The preferred model included a cue
salience parameter and a cue-specific unconditioned magazine
responding term, as well as recency-weighted pre-cue responding
parameter (Fig. 1d). In particular, the constant term attributable to
unconditioned cue-elicited magazine responding was higher on
clicker than tone trials (Z= 3.98, p < 0.001, Wilcoxon signed-rank
test; p < 0.015 for Group 1 or 2 analysed separately). Therefore,
once the difference in cue attributes was accounted for, rats’
behaviour could be well explained by using this modified simple
reinforcement learning model (Fig. 1e).

Both NAc and OFC haemodynamic signals track Pavlovian
responding
We examined how TO2 responses in NAc and OFC (Fig. 2) tracked
animals’ learning of the appetitive associations and violations of
their expectations. After exclusions for misplaced electrodes and
poor quality of signals (see Supplementary Methods, Fig. S3), 40
electrodes in 20 rats were included for analysis (NAc= 25
electrodes from 15 rats, OFC= 15 electrodes from 11 rats).
We initially performed model-free analyses to investigate the

TO2 signals in response to presentation of the CSHigh and CSLow
cues as the rats learned the reward associations.
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TO2 responses during presentation of the cues changed
markedly over training in a similar manner in both brain regions
(main effects of cue and session: both F > 9.49, p < 0.001) (Fig. 3a,
b). In fact, analysis of the subset of animals with functional
electrodes recorded simultaneously in NAc and OFC (n= 6 rats)

showed a significant positive correlation between the signals
recorded in each area (r2= 0.41, p < 0.01). Moreover, mirroring the
behavioural data, the patterns of responses differed substantially
according to the cue identity (CL1–T2 or T1–CL2). While the TO2
response following the CSHigh developed similarly in both groups,
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there was a substantial difference in the CSLow response, with
average signals when the clicker was the CSLow being significantly
higher than when the tone was the CSLow (Cue × cue identity
interaction: F1,36= 18.67, p < 0.001; CL1–T2 vs. T1–CL2, CSHigh: p=
0.32, CSLow: p < 0.001).
To establish the relationship between development of maga-

zine responding and the TO2 signals, we regressed the model-
derived estimates of cue value from the model that best fitted the
behavioural data, V(t), against the trial-by-trial TO2 responses and
found a significant positive relationship in both regions in both
groups (Fig. 3c). This was not simply a correlate of invigorated
responding as cue value was a significantly better predictor than
trial-by-trial magazine head entries (Fig. S4). Therefore, once
differences in cue identity are accounted for, it is possible to
demonstrate that TO2 signals in both NAc and OFC track the
expected value associated with each cue.

Separate haemodynamic signatures of signed and unsigned
prediction errors in NAc and OFC
We next investigated how the probabilistic delivery or omission of
reward-shaped TO2 responses in NAc and OFC, and how these
signals were shaped by cue-elicited reward expectations as
learning progressed. As there were significant interactions
between brain region with cue and training stage and their
combination (all F > 3.76, p < 0.028), we here analysed responses
in the two regions separately.
We again first performed model-free analyses, by focusing on

how the average outcome-evoked changes in TO2 responses were
influenced by the preceding cue and how these adapted over
training. As can be seen in Fig. 4, the primary determinant of the
signal change in the NAc was whether a reward was received
(main effect of reward: F1,36= 47.72, p < 0.001). However, the size
of reward and no-reward signals, normalised to the time of
outcome, depended on which cue had preceded the outcome,
and these patterns altered as learning progressed (significant
cue × outcome and cue × outcome × training-stage interactions,
both F > 18.669, p < 0.001), suggesting a strong influence of
expectation on TO2 responses. Follow-up comparisons showed
that there was a reduction in reward-elicited TO2 responses on
CSHigh trials as training progressed (CSHigh rew, stage 1 vs. stage 3:
p= 0.016; stage 2 vs. stage 3: p= 0.065). Unexpectedly, there was
also a diminution of omission-elicited reductions in TO2 responses
on these trials (CSHigh no reward, stage 1 vs. stage 3: p= 0.014),
which, from Fig. 4b, can be seen to be particularly prominent in

the CL1–T2 group. By contrast, on CSLow trials, there was no
meaningful change in TO2 responses to delivery or omission of
reward throughout training (all p > 0.37). As might be expected
given its effect on behaviour and cue-elicited neural signals, cue
identity again influenced outcome signals, resulting in a four-way
interaction of all the factors, as well as two-way interactions
between cue × identity and training stage × identity (all F > 4.33,
p < 0.019). Importantly, however, when analysed separately, both
counterbalance groups showed the key cue × outcome × training-
stage interaction (F > 4.84, p < 0.019).
In the OFC, outcome was also a strong influence on TO2

responses (F1,13= 51.18, p < 0.001) and this was again shaped by
the preceding cue (cue × outcome interaction: F1,13= 5.37, p=
0.037). However, unlike in NAc, there came to be an increasingly
strong TO2 response when reward was omitted, particularly after
CSHigh (Fig. 4c, d). This resulted in a cue × training-stage interaction
(F1,13= 5.37, p= 0.037; CSHigh vs. CSLow, p= 0.51 for the early
training stage, p < 0.001 for mid- and late stages). While there
were qualitative differences in responses in the two counter-
balance groups, none of the interactions with this factor or the
main effect reached significance (all p > 0.069).
While these model-free analyses illustrate that the TO2 responses

changed dynamically and differently over the course of training in
the two brain regions, they do not clearly show whether either
response might encode a teaching signal useful for learning, such as
a reward PE: δ(t)= V(t)+ r(t)− V(t− 1). Therefore, we next used
model-based analyses to examine whether there was a relationship
between TO2 responses across all sessions and the fundamental
components of a reward PE: (i) a positive influence of outcome, r(t),
and (ii) a negative influence of model-derived cue value, −V(t− 1).
While both NAc and OFC TO2 responses showed a strong positive
influence on outcome, only the NAc signals fulfilled both criteria of a
reward PE by also exhibiting a significant negative influence of cue
value; in OFC, by contrast, the cue value effect was positive (Fig. 4e).
We also examined whether reward PE-like TO2 responses in NAc
were present throughout training. This showed that while correlates
of both NAc positive and negative reward PEs can be observed in
rats that are still learning the cue–reward associations once
appropriately established only positive reward PEs remain evident
(Fig. S5).
Although the OFC TO2 responses do not correspond to a reward

PE, the patterns of signals nonetheless still dynamically change
over learning. As previous work has suggested that OFC neurons
may signal the salience of the outcome for learning, we examined
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core and shell, while the OFC electrodes were in the ventral orbital sector

Amphetamine disrupts haemodynamic correlates of prediction errors in. . .
E Werlen et al.

796

Neuropsychopharmacology (2020) 45:793 – 803



whether TO2 responses instead correlated with how unexpected
each outcome was, corresponding to an unsigned PE. This analysis
showed that each animal’s trial-by-trial unsigned PE had a strong
positive influence on OFC signals (Fig. S6). Again, this was present
in both counterbalance groups.
Therefore, while the changes in NAc TO2 responses reflect how

much better or worse an outcome was than expected, OFC TO2
responses indicate how surprising either was.

Amphetamine disrupts cue-specific value encoding and prediction
errors
Having established haemodynamic PE correlates in NAc and OFC,
we next wanted to investigate how an acute dose of ampheta-
mine (1 mg/kg), an indirect sympathomimetic known to potenti-
ate dopamine release, influenced cue value and prediction error
TO2 responses.

We first analysed baseline magazine responding in the pre-drug
and the drug administration sessions. Although amphetamine
caused a numeric increase in baseline responding, this was
variable between animals—7/15 rats given amphetamine showing
a substantial increase in baseline magazine response rates,
whereas the other 8/15 animals showed a decrease in response
rates —and the drug × session interaction did not reach
significance (F1,26= 3.71, p= 0.065). By contrast, there was a
substantial and consistent change in cue-elicited responses (cue ×
session × drug interaction: F1,26= 16.31, p < 0.001). This was not
caused by differences between the drug groups on the pre-drug
session (no main effect or interaction with drug group: all F < 1.21,
p > 0.28). Instead, as can be observed in Fig. 5a, while both the
vehicle and amphetamine groups responded more on average to
the CSHigh than the CSLow on the pre-drug day (p < 0.003), this
discrimination was abolished after administration of the drug

cue onsetcue onsetcue onset
10 s

1nA

1nA

A B

CSHigh =
CSLow =

CSHigh=
CSLow =

C

0

10

0

20

0

20

1 2 3 4 5 6 7 8 9

Sessions

AU
C

 (
nA

 x
 s

)
AU

C
 (

nA
 x

 s
)

A U
C

 (
nA

 x
 s

)
AU

C
 (

nA
 x

 s
)

0

10

20

-20

10

-10

10 s 10 s
10 s 10 s

Group C1-T2
1

0

1

0

1

0

NAc

1

0

1

0

Group T1-C2

Expected value

cue 
onset

cue 
onset

1

0

Group T1-C2

Group C1-T2

OFC
Expected value

cue 
onset

cue 
onset

E
ffe

ct
 S

iz
e 

(a
.u

.)

E
ffe

ct
 S

iz
e 

(a
.u

.)

10 s

N
A

c G
ro

up
 C

L1
-T

2
n 

=
 1

4 
/ 9

G
ro

up
 T

1-
C

L2
n 

=
 1

1 
/ 6

O
FC

n 
=

 8
 / 

6
n 

=
 7

 / 
5

G
ro

up
 C

L1
-T

2
G

ro
up

 T
1-

C
L2

Day 9Day 1 Day 5

CSHigh=
CSLow=

CSHigh=
CSLow=

Fig. 3 Haemodynamic correlates during cue presentation. a TO2 responses on 3 sample days time-locked to cue presentation in the two
counterbalance groups recorded from either NAc (upper panels) or OFC (lower panels). b Average area-under-the-curve responses (mean ±
SEM) extracted from 5 to 10 s after cue onset for each cue across the nine sessions. c Average effect sizes in NAc (left panel) and OFC (right
panel) from a general linear model relating TO2 responses to trial-by-trial estimates of the expected value associated with each cue. Main plots
include all animals; insets show the analyses divided up into the two cue identity groups

Amphetamine disrupts haemodynamic correlates of prediction errors in. . .
E Werlen et al.

797

Neuropsychopharmacology (2020) 45:793 – 803



(CSHigh vs. CSLow: p= 0.35), but not the vehicle (p < 0.001). Note
that while there were again some differences between the
counterbalance groups (cue × session × drug × identity interac-
tion: F1,26= 6.30, p= 0.019), the effects of amphetamine admin-
istration were comparable in both groups (amphetamine
group: significant cue × session interaction, F1,13= 9.047, p=
0.01; no significant cue × session × identity interaction, F1,13=
2.71, p= 0.12).
Administration of amphetamine also had a pronounced but

specific effect on TO2 responses. During the cue period, the effect
in both NAc and OFC mirrored the effect of the drug on behaviour,
with amphetamine abolishing the distinction between the
average TO2 response elicited by presentation of the CSHigh or
CSLow (cue × session × drug: F1,32= 6.22, p= 0.018; CSHigh vs.
CSLow, amphetamine group drug session, p= 0.25; all other p <
0.006) (Fig. 5b, c, S7A). While there were still notable effects of cue
identity on signals, follow-up comparisons found that there were
no reliable differences in TO2 responses between the different cue
configurations in either group or session (all p > 0.27).

Based on the differences between outcome-elicited signals in
NAc and OFC observed during training, we split the outcome-
elicited TO2 data by region. In the NAc, there was a significant
cue × session × outcome × drug interaction (F1,21= 4.82, p= 0.04).
We focused follow-up analyses on each drug group separately
without cue identity as a between-subjects’ factor as the NAc
electrode exclusion criteria inadvertently biased the distribution of
rats assigned to the drug and vehicle groups as a function of cue
identity (χ2= 9.4, df= 3 and p= 0.024) (see Fig. S7 for breakdown
by counterbalance group).
While vehicle injections caused no changes in NAc signals (no

main effect or interaction with session: all F < 1.4, p > 0.33),
amphetamine had a marked influence on outcome-elicited TO2
responses, selectively blunting CSLow outcome responses (cue ×
session × outcome interaction: F1,12= 22.07, p= 0.001; CSLow
reward or no reward: pre-drug vs. drug session, p < 0.005; CSHigh,
all p > 0.22). This meant that on amphetamine, there was now no
reliable distinction between reward-evoked TO2 signals based on
the preceding cue (p= 0.08; all other CSHigh vs. CSLow
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comparisons, p < 0.015) (Fig. 5d, e). Consistent with this, we also
found a significant reduction in the relationship between TO2
responses and positive reward prediction errors selectively after
amphetamine (comparison of peak effect size on and off drug:
session × drug interaction: F1,21= 8.02, p= 0.01; pre-drug vs. drug
session, amphetamine group: p= 0.003; vehicle: p= 0.66) (note,

we did not analyse the negative RPE as this was already largely
absent in the pre-drug session in animals showing strong
discrimination between the CSHigh and CSLow).
In OFC, there was also a significant change in TO2 responses

when comparing outcome-elicited signals on the drug session
with the pre-drug day (significant cue × session × drug and cue ×
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session × outcome × drug interactions: both F > 5.35, p < 0.042). In
the control group, vehicle injections caused a general increase in
all the OFC TO2 responses (main effect of testing session: F1,6=
7.51, p= 0.034). By contrast, in the amphetamine group, there was
a striking reduction in OFC TO2 signals, particularly elicited by
CSHigh cues (main effect of testing session: F1,5= 5.12, p= 0.073;
significant cue × session interaction: F1,21= 29.527, p= 0.003). An
analysis of the unsigned prediction error signal also resulted in a
session × drug interaction (F1,11= 6.63, p= 0.026), though this was
driven both by a numeric decrease in the regression weight in the
amphetamine group and an increase in the regression weight in
the vehicle group.
Taken together, therefore, amphetamine impaired the discrimi-

native influence of CSHigh and CSLow cues on behaviour and also
corrupted the influence of these cue-based predictions on NAc
and OFC TO2 responses.

DISCUSSION
The results presented here show that haemodynamic signals in
NAc and OFC dynamically track expectation of reward as rats form
associations between cues with high or low probability of reward
outcome. Importantly, both regions also displayed distinct forms
of haemodynamic prediction error signal. NAc signals were
shaped by reward expectation and the specific valence of the
reward outcome, while in contrast OFC signals did not discrimi-
nate the valence of reward outcome, but rather reflected how
surprising either reward outcome was. A single dose of
amphetamine, sufficient to modulate dopamine activity, caused
a loss of discrimination between cues that was evident both
behaviourally and in the haemodynamic signatures of reward
expectation and prediction error in both regions.
These results extend a previous study of instrumental learning

where increases in NAc TO2 were observed as rats learned to
associate a deterministic cue with receipt of reward upon pressing
a lever [35]. The present probabilistic learning study allowed a
formal assessment of whether the measured TO2 signals displayed
features that would categorise them as encoding reward
prediction errors (RPEs). To be considered an RPE signal, three
cardinal features should be measurable: (i) a positive influence of
expected reward value on cue-elicited signals (i.e., a greater
response to a cue that is thought to predict a higher reward), (ii) a
positive influence of actual reward delivered (i.e., a greater
response when a high-value reward is actually delivered
compared with when it is omitted) and (iii) a negative influence
of expected reward value on outcome-elicited signals (i.e., a larger
response to reward delivery the less that reward is expected and/
or a smaller response to reward omission the more that reward is
expected) [43, 44]. Using behavioural modelling, all three of those
features were evident in NAc TO2 signal, consistent with a number
of human fMRI studies of reward-guided learning in healthy
subjects [43–46]. Although human fMRI studies predominantly use
secondary reinforcers such as money to incentivise performance,
similar RPE-like activations in NAc are also observed in studies by
using primary fluid reinforcers in lightly food/water-restricted
participants, which more closely mimic the means by which rats
are motivated to perform the present task, see ref. [47].
While both positive and negative RPE-like TO2 signals were

evident across the whole learning period, it was clear that the
influence of each signal changed over time. Both positive and
negative RPEs were evident early in learning. However, as
discrimination between high and low reward probability cues
was learned, negative RPEs had an increasingly negligible
influence on NAc haemodynamic signals. Such adaptation has
resonance with a previous finding in humans that NAc BOLD
signals are not observed for every RPE event, but only those
currently relevant to guide future behaviour [46]. The selective
involvement of NAc in signalling whether an event is better or

worse than expected fits well with the hypothesised roles of the
extensive dopaminergic projections to this region, and suggests a
fundamental role for NAc in sustaining approach responses to
reward-associated cues [48, 49].
It has been demonstrated that dopamine release in the core

region of the NAc correlates with a RPE, and similar to that
observed here, dynamically changes over the course of learning
[9, 10, 14, 50, 51] (see ref. [52] for a different interpretation). The
amperometry electrodes in the current study were largely in
caudal parts of ventral NAc, spanning the core and ventral shell
regions. Given that the electrodes are estimated to be sensitive to
changes in signal over approximately a 400-μm sphere around the
electrode [53, 54], it is plausible that the signals we recorded here
could have been influenced by RPE-like patterns of dopamine
release [55]. Several recent papers have shown that optogenetic
stimulation of dopamine neurons can have widespread influence
on forebrain BOLD signals [56–58]. However, direct evidence for
this link is currently lacking, and a recent study comparing
patterns of BOLD signals with dopamine release in humans found
indications of uncoupling between the measures [59]. Therefore, it
is also conceivable that the NAc haemodynamic signals we
observed here instead reflect afferent input from regions such as
medial frontal cortex, where RPE-like signals have also been
recorded [44, 60, 61].
By contrast, OFC TO2 signals did not respond to prediction error

events in quite the same way as the NAc did and did not meet all
three formal criteria to be considered formal correlates of an RPE.
While some studies have found RPE-like outcome signals in OFC
[62, 63], several—including those fMRI studies that have adopted
the stringent criteria applied here—have not, e.g., refs. [44, 64, 65].
Like NAc, OFC TO2 signals signalled reward expectations when the
cues were presented. This is consistent with previous fMRI and
electrophysiological studies suggesting that central or lateral OFC
may represent stimulus–reward mappings during cue presenta-
tion, e.g., refs. [66–68]. However, unlike NAc, the OFC signals
measured in the present study tended to increase following
reward omission as well as after reward delivery and this increase
scaled with how surprising the reward omission was. Electro-
physiological studies suggest that similar proportions of OFC cells
exhibit either positive or negative relationships with value, and
individual neurons can encode both positive and negative
valenced information at outcome [69, 70].
These outcome-driven signals did however correlate with an

unsigned prediction error: how surprising or salient any outcome
is based on current expectations. There are an increasing number
of studies implicating OFC in modulating salience for the purposes
of learning [71–74]. However, given the precise pattern of OFC
signals observed in the current study, the OFC TO2 responses
might reflect the acquired salience of an outcome, e.g., refs.
[71, 75], which represents both how surprising and how rewarding
it is. Even though such responses do not signal whether an
outcome is better or worse than expected, they are still important
to guide the rate of learning or reallocate attention. Single-site
lesion studies demonstrate a role for OFC, as well as for NAc, in
aspects of stimulus–reward learning [76, 77]. However, a specific
interaction between these regions to support these behaviours
must depend upon another mediating region, as there is no direct
projection between the two [78].
One unexpected but fortuitous finding was that TO2 signals

related to magazine responding were strongly influenced by cue
identity. By comparing different behavioural models, this effect
was best explained by including two additional parameters to a
simple reinforcement learning model: (i) a cue salience parameter,
which scaled the influence of the RPE on future value estimates as
a function of which auditory cue had been presented, and (ii) a
cue “arousal” parameter, which was a constant term applied from
the start of training. It has long been established that cue salience
can be an important determinant of learning rates, e.g., refs.
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[79–81], and this is a standard term in the Rescorla–Wagner and
other influential association learning models, capturing the effect
that more salient or intense cues are learned about faster and are
more readily discriminated than weaker or less salient cues.
However, an extra parameter was also needed to account for the
fact that in the majority of animals, responding to the clicker was
greater than the tone at the start of testing, irrespective of
whether it was assigned to be CSHigh or CSLow. While we do not
know the precise reason for this effect and are not aware of this
being reported in previous studies, one speculation is that the rats
partially generalised the clicker cue to the sound of the pellet
dispenser. Regardless of its precise cause, importantly, by using
model-derived estimates of the value, we were nonetheless able
to observe identical neural correlates of reward prediction and
prediction error in both cue-counterbalanced groups.
Moreover, across both groups, a single “moderate/high” dose of

amphetamine (1 mg/kg) [82] at the end of learning, mimicking a
dopamine hyperactivity state, was sufficient to impair discrimina-
tive behavioural responses to the high and low probability cues
and also to disrupt haemodynamic signals in both NAc and OFC.
This was not simply a blunt pharmacological influence on
neurovascular coupling as the signal change was specific to
certain conditions, for instance selectively reducing the NAc
reward signals on CSLow trials but leaving the reward and omission
responses on CSHigh trials unaltered.
This may at first appear at odds with previous studies that have

shown that this dose of amphetamine can selectively augment
responding to reward-predictive cues over neutral cues and
enhance phasic dopamine release and neuronal activity in the
NAc [36, 39] and neuronal activity in OFC [83]. However, there are
a number of important differences between these previous
studies and the one reported here.
First, in our paradigm, the cues were probabilistically

rewarded, meaning that both were associated with a certain
level of reward expectation and elicit conditioned approach. A
previous study has shown that the same dose of amphetamine
as used in the current study can disrupt conditional discrimina-
tion performance [40]. Second, as discussed above, increased
dopamine release may not necessarily map directly onto
comparable haemodynamic changes. Indeed, although it would
be expected that the dose of amphetamine used in the current
experiment would boost phasic dopamine release to reward-
predicting cues [36], fMRI studies have tended to observe a
blunting of haemodynamic responses to such cues in NAc and
frontal cortex following administration of a single dose of
amphetamine or methamphetamine, comparable to what we
observed in both NAc and OFC [37, 84]. In addition, one of these
studies [37] reported the loss of RPE encoding in NAc, an effect
that was also evident in the current study. Amphetamine is
known to increase levels of dopamine—and other monoamines
—in a stimulus-independent as well as a stimulus-driven
manner. Therefore, the critical factor for appropriate responding
is likely to rest on the balance of these two elements in
frontal–striatal–limbic circuits, and the disruption of haemody-
namic signalling of incentive predictions and prediction errors
we recorded may reflect this. From the present data, it is unclear
whether amphetamine is directly corrupting calculations of RPEs
or is instead primarily disrupting the inputs then used to
calculate the RPE such as cue-elicited reward expectation.
The changes in haemodynamic responses observed after

amphetamine administration here are also consistent with an
increasingly large body of fMRI studies of reward-guided learning
in patients displaying symptoms that are believed to arise in part
from dysregulated dopamine, such as psychosis and anhedonia
(see refs. [16, 19, 25, 85] for reviews). This has raised the possibility
that changes in behaviour and brain responses during reward
anticipation and reinforcement learning might act as a cross-
diagnostic preclinical translational biomarker [16, 86]. In parallel,

there has been increased interest in using these types of finding
as foundations for theoretical approaches to link the underlying
biological dysfunctions to observed symptoms in patients (e.g.,
refs. [21, 87–89]).
While there is general consensus about the promise of such

approaches, the literature is complicated by the diversity of the
disorders and the drug regimens that patients have taken, which
makes testing specific causal hypotheses about the relationship
between altered brain function and psychiatric symptoms difficult.
By contrast, in an animal model, it is possible to have precise
control over and measurement of induced changes in neurobiol-
ogy. Therefore, establishing the feasibility of observing these
signatures in a freely behaving rodent, measured by using a valid
proxy for fMRI, and demonstrating how clinically relevant
pharmacological perturbations affect these responses, may be
an important step to bridge the gaps in our understanding. This
foundation, if combined with other causal manipulations (such as
pharmacological or genetic animal models relevant to psychiatric
disorders) and more sophisticated behavioural tasks that allow us
to take into account different learning strategies, e.g., refs. [90, 91]
and value parameters [7, 92], could therefore provide new
opportunities for understanding how dysfunctional neurotrans-
mission is reflected as changes in haemodynamic signatures and
how both relate to behavioural performance.
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