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Sex differences in antidepressant efficacy
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Sex differences have been observed across many psychiatric diseases, especially mood disorders. For major depression, the most
prevalent psychiatric disorder, females show a roughly two-fold greater risk as compared to males. Depression is sexually dimorphic
with males and females exhibiting differences in clinical presentation, course, and response to antidepressant treatment. In this
review, we first discuss sex differences observed in depressed patients, as well as animal models that reveal potential underlying
mechanisms. We then discuss antidepressant treatments including their proposed mechanism of action and sex differences
observed in treatment response. We include possible mechanisms underlying these sex differences with particular focus on
synaptic transmission.
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INTRODUCTION: SEX DIFFERENCES IN DEPRESSION
Depression is the most prevalent mood disorder and a leading
cause of mortality and morbidity worldwide. Despite its high
incidence and socioeconomic impact, the etiology of depression
remains poorly understood. It involves a combination of genetics
and environmental factors as well as the dynamic interaction of a
number of brain regions, however, it is not clear how these factors
interact to trigger depression. Adding to this complexity are the
differences observed between men and women. Women are
nearly twice as likely as men to suffer from depression [1], and
more than 2/3 of suicide attempts are by women [2]. Female
depressed patients show greater severity, earlier age of onset, and
increased duration of depressive episodes as compared to male
patients [3]. The clinical presentation of symptoms of depression is
sexually dimorphic as well, including differences in comorbid
conditions [3]. Currently, the antidepressants commonly used for
the treatment of depression are selective serotonin reuptake
inhibitors (SSRIs) and tricyclics (TCA). Yet, these are successful in
only a fraction of the population and take weeks to months to be
effective in responders. Efficacy also differs between the sexes.
Evidence put forth in an attempt to explain the disparity in
depression and antidepressant response between males and
females includes differences in neuronal circuitry, hormone levels,
and metabolism [4–6]; however, the reason for these sex
differences remains unclear.
Despite the evidence for greater prevalence of depression

among women, there is considerably less attention devoted to
studying depression in females or sex differences in depression. In
fact, many of the animal models used to study biological
mechanisms of depressive symptoms or of antidepressant
response rely solely on male subjects ignoring a critically
important study population. The development and verification
of these assays in males has without a doubt been useful in
reducing variability and producing meaningful data with respect
to depression and antidepressant response in males. As sex
differences result in variation in each step between animal

behavior and clinical presentation of depression, the optimization
of animal models for application in males only has made it
exceedingly difficult to incorporate females into this same
framework. This disconnect makes the already challenging study
of the pathophysiology underlying depression even more difficult,
obscuring and delaying the development of broadly effective
antidepressants. This review aims to highlight the important
neurobiological factors underlying sex differences in depression
and antidepressant response. In delving into mechanisms that
potentially explain these differences, we will dedicate our focus to
neuronal circuits and synaptic transmission, as other important
aspects, such as hormone regulation and pharmacokinetics have
been reviewed extensively elsewhere [4, 7–11]. Investigation into
the pathophysiology underlying depression has aided in our
understanding of antidepressant response and efficacy. Similarly,
knowledge regarding sex differences in depression is crucial to
understanding differential antidepressant efficacy. Therefore, we
will begin this review by discussing sex differences in depression
in both humans and animal models.

Humans
Women have roughly twice the lifetime rates of depression as
men [12, 13]. According to the latest NHANES survey data for
2013–2016 amongst adults 20 and over, women were roughly
twice as likely to be suffering from depression as men in a given 2-
week period (10.4% for women, 5.5% for men), with an overall rate
of 8.1% [1]. However, this disparity is not an absolute throughout
the lifespan. Depressive disorders through childhood have a
relatively low prevalence estimated at <5% overall, and are
reported at similar rates by sex, or at even greater rates in males
than females (e.g. [14]). Beginning with puberty and on into young
adulthood, incidence of depressive disorders rise sharply, with a
greater increase in females compared to males. The greatest
predictor of the disparity is pubertal development, specifically
Tanner Stage III [15]. By age 13–15, females begin to suffer from
dramatically higher rates of depression than males [16]. In a 10-
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year longitudinal study of 1037 children in New Zealand followed
from ages 11 to 21, the lifetime prevalence of at least one major
depressive episode meeting full diagnostic criteria increased from
1.8% to 20.7% in males and from 0.3% to 42.6% in females [17].
Patients who are depressed do not comprise a homogenous

population of symptomatology. According to the latest Diagnostic
and Statistical Manual of Mental Disorders (DSM-5), a diagnosis of
major depressive disorder (MDD) requires at least 5 out of 9
possible symptoms present during the same 2-week period, and
must include either (1) anhedonia or (2) depressed mood, or both.
Other criterion symptoms include (3) insomnia or hypersomnia, (4)
changes in appetite or weight, (5) changes in psychomotor status,
(6) fatigue or loss of energy, (7) worthlessness or guilt, (8)
diminished concentration or indecisiveness, or (9) suicidal
thoughts or behaviors. Using these criteria, it is plain to see that
there are a myriad of ways—227 in total—to qualify for a
diagnosis of depression by checking combinations of anywhere
from 5 to 9 symptoms. Furthermore, several of the criteria can be
met in opposite ways, greatly increasing the range of clinical
presentations to 14,528 possible combinations of criteria. It is thus
possible for two patients diagnosed with MDD to share no
common symptoms [18]. Zimmerman and colleagues examined
1566 patients who met MDD criteria, and observed 170 of these
227 possible combinations. The top 9 combinations only
composed about 40% of the study population. This highlights
potential problems that conflating diagnostic heterogeneity,
either in a human study or an animal one, can yield for attempts
to unravel pathophysiological and etiological mechanisms, as well
as the search for biomarkers or broadly effective treatments for
the entire depressed population.
Given this heterogeneity in presentation across the total

population of patients that present with MDD, it is not surprising
that the manner in which women suffer from depression tends to
differ from men, in addition to the greater overall rate at which
women suffer. One of the largest and longest concerted efforts to
evaluate depression treatment to date provided important data
on disease presentation. The Sequenced Treatment Alternatives to
Relieve Depression (STAR*D trial) enrolled over 4000 outpatients
seeking depression treatment at 41 primary and specialty care
sites to compare first-line and subsequent switches and add-on
therapies towards an endpoint of remission [19]. At baseline,
women enrolled in the study reported greater depression severity,
greater rates of hyperphagia and weight gain, hypersomnia,
interpersonal sensitivity, and other somatic symptoms like
gastrointestinal disturbances as well as co-morbid somatoform
disorder. Women were also more likely to report anxiety-related
disorders, bulimia, and prior suicide attempts, but less current
suicidal ideation [20]. Men, on the other hand, were more likely to
report comorbid substance abuse. Both sexes were equally likely
to report irritability. Although women make two-time to three-
time more suicide attempts than men [2], they are less likely to be
lethal. The greatest disparity in suicide attempt rates is driven by
adolescent age females [21, 22].
Rumination, chronic negative circumstances or strain, and a low

sense of mastery have each been found to be more common in
women [23]. These individual components contribute to greater
depressive symptoms in women, and depressive symptoms feed
into greater rumination and less mastery over time, setting the
stage for positive feedback and recurrence in women in particular
[24]. Men have been found to be more likely to forget past
episodes of depression [25], likely reflecting a lower likelihood of a
ruminative coping strategy compared to women. Subclinical
depression symptoms are also more common in women than in
men [26]. Finally, heritability of MDD in women is greater than in
men, suggesting a higher genetic vulnerability [27].
It is important to note that differences in disease presentation

are not absolute, which might suggest an altogether separate
etiology, but that these trends demonstrate key signs and

symptoms that are more prevalent in women than in men.
Understanding these differences as well as commonalities may
shed light into the fundamental mechanisms which translate into
altered mood and behavior in both sexes, as well as inform
tailored diagnostic and treatment intervention strategies.
Many of these observations on variation in clinical presentation

have recurred in the literature [28], resulting in efforts to
categorize subtypes. For example, Silverstein described “somatic
depression” associated with greater fatigue and disturbances in
appetite and sleep, with resulting disparity in the rate of this
somatic depression (females 15.2% lifetime vs. males 7.0%), but
not in rates of depression that did not involve all three of these
somatic categories (female 6.9% vs. male 6.0%) [29]. Atypical
depression characterized by intact mood reactivity, as well as
prevalence of hypersomnia and weight gain is associated with
female gender, younger age of onset, greater severity and
disability, and higher number of suicide attempts, but is no
longer delineated in the DSM [30, 31].
Risk factors for depression include a combination of genetic and

environmental components, such as family history of depression
and exposure to stress, with interactions between traits and
experience increasing likelihood of onset of a depressive episode.
A study in randomly selected American adolescents suggested
that greater early adolescent challenges contributed to differences
in affect in high-school aged teenagers [32], findings which
highlight a role for the so-called stress-diathesis model of
depressive behavior in which exposure to stress interacts with
with existing psychobiological traits. Classically in this context,
stressful life events interact with a negative inferential cognitive
style to generate hopelessness and predispose towards depres-
sion [33]. In a prospective study of adolescents, negative
inferential styles at baseline interacted with negative events over
a 5-month follow-up period to predict depression and anhedonia
specifically in females [34]. The stress-diathesis model has been
developed further beyond the interaction of stress and cognitive
style to stress interactions with the biological framework in a
genetic epigenetic context [35, 36]. A growing body of evidence
supports roles of both prenatal and early life stress imparting
vulnerability for mood-related symptoms in adulthood, however,
caution should be taken when interpreting human data based on
self-report and recollection.
No discussion on sex differences is complete without mention

of the effects of the reproductive cycle on depressive disorders. As
mentioned above, the sex-based disparity in depression pre-
valence emerges with puberty. For many women, severity of
symptoms of existing depression increases in the premenstrual
phase [37]. In data from the STAR*D trial, 66% of women reported
premenstrual exacerbations in their symptoms [38]. Of note, this
was associated with longer depressive episodes and shorter
latency to relapse. The increased incidence of new onset
depressive symptoms in women appears to be reduced drama-
tically with menopause [39]. Women with established history of
depression retained an eight-fold greater risk of depressive
symptoms after menopause and a 4-6-fold increased risk in
relapse [39]. Regarding the effect of pregnancy and birth, DSM-5
includes a peripartum-onset specifier for a depressive episode in
the third trimester to up to 4 weeks after childbirth [40]. In one
study of women with postpartum depression identified by
Edinburgh Postnatal Depression Scale, ~40% began post-partum,
~33% began during pregnancy, and ~26% had depressive
symptoms before becoming pregnant [41]. A number of studies
have also examined the interaction between depression and
menstrual disturbances further linking sex hormones and depres-
sion [42, 43].
A myriad of specific effects of sex hormones will be discussed in

further detail below. Furthermore there are a wide range of
developmental effects to consider regarding biologically deter-
mined sex differences. These include effects of X and Y
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chromosomal genes, organizational effects of gonadal steroid
exposure during development, activational effects of reproductive
hormone exposure throughout the lifespan, as well as the effects
of parental stress prior to conception that have differential effects
in males and females on depression-related behaviors and stress
regulation (for an excellent review, see [11]). No single manuscript
is likely to be exhaustive in this regard, although we touch briefly
on those most pertinent to our examination of current efforts to
understand sex differences in the key neurobiological circuitry
underlying the patho-etiology of depression and antidepressant
treatment.

Animal models
Depression is a multifaceted, heterogeneous disease with limited
knowledge regarding predisposing factors. Animal research is an
essential method for improving our understanding of these factors
and underlying neuronal substrates. Depression cannot be fully
recapitulated in an animal model—recurrent thoughts of death or
suicide or excessive thoughts of guilt are clearly not measurable in
animals. Instead, focusing on and modeling one core sign or
symptom of this disorder has the benefit of simplifying a complex
disorder like depression into behaviors that are easier to measure
and are likely to involve fewer genes [44, 45].
The ideal animal model would have identical symptoms (face

validity), causal factors (construct validity), and response to
treatments (predictive validity) to the human disease it is
attempting to replicate. Strategies that have been used to model
depression range from environmental to genetic manipulation.
We will cover many, but by no means all, of these models and
discuss sex differences observed as well as their roles in
depression.

Stress-based models
Depressed patients report more negative or stressful life events
than non-depressed individuals, with exposure to stress one of the
most prominent environmental factors associated with onset of a
depressive episode [35]. Women, to a greater degree, report
interpersonal stressors as a contributing factor. This is particularly
greater in adolescents and young adults, when the disparity in
depression is greatest. The impact of stressors is dependent upon
characteristics of the stressor itself (e.g. severity, chronicity,
predictability), as well as an individual’s history and ability to
cope with stress [46, 47]. This sensitivity to stress is greater in
females, who show an increase in the magnitude of the stress
response and longer recovery time as compared to males. There
are clear sex differences in hypothalamic–pituitary–adrenal (HPA)
axis regulation in rodents, and the connection between dysregu-
lation of stress response and development of depression has been
reviewed elsewhere [6, 48]. In this section, we will discuss some of
the more widely used paradigms including observed sex
differences.

Chronic stress. While stressors encountered on a daily basis are
often acute in nature, it is often the case that individuals endure
chronic stressors. These can be related to psychosocial issues,
financial impositions, health, discrimination/stigma, or a combina-
tion of different factors. The stressors can be inconsistent,
unpredictable, ambiguous, and uncontrollable. They may differ
in severity or quality over time, making it difficult to establish
adequate coping methods, or limiting the ability to take
preparatory steps. Chronic stress paradigms used in animal
models have sought to recapitulate this by exposing animals to
stressors over the course of many days. For example, chronic
unpredictable stress (CUS) (also referred to as chronic mild stress)
exposes animals to different stressors daily over the course of
2–3 weeks [49]. While the exact stressor selection and order of
rotation varies by investigator, some examples include forced
swim, wet bedding, restraint, strobe light, white noise exposure,

and cage tilt. Changing the stressor daily prevents animals from
anticipating or adapting to stress exposure. As a result, male
animals show anhedonic-like behaviors as measured by the
sucrose preference test (SPT) and social interaction test (SIT).
However, the use of sucrose preference to model anhedonia has
been difficult to recapitulate in females [50, 51]. Additionally,
sucrose palatability can be modulated by the estrous cycle [52].

Learned helplessness. One of the most widely used models of
depression has traditionally been that of ‘learned helplessness,’
inspired by early observations in dogs thought to represent
despair or hopelessness [53]. Animals are exposed to either
escapable shock, yoked inescapable shock (in which shock
exposure is dictated by the actions of a fellow “yoked” rodent),
or no shock exposure. They are subsequently tested in a
behavioral task, most often one that assesses escape performance.
In this paradigm, the inescapably shocked animals subsequently
show frequent failures to escape from shock, whereas rats or mice
that had previously been exposed to either escapable shock or no
shock do not exhibit such deficits [54]. Studies examining sex-
dependent effects of this test found that while male animals
exposed to inescapable shock showed deficits in escape
behaviors, female behavior remained unchanged [55]. Addition-
ally, inescapable shock alters exploratory and anxiety-like beha-
viors, which appeared to be longer lasting in males than females
[56].

Social stress. The main source of stress in humans is social in
nature and is thought to contribute to the development and
expression of mood disorders [57]. Animal models that involve a
social context may be more appropriate as they represent
situations that may be presented to humans for which the
response is evolutionarily conserved. This is salient in the context
of sex differences as interpersonal stress, in particular, drives the
increased exposure of females to stress and has been shown to
partially mediate the increased prevalence of depression in
females after puberty, while women in general are more likely
to express affiliative behavior and seek support when faced with
stress as a coping style [58, 59]. In animals, the most widely used
social stressors are defeat, isolation, and crowding. These types of
stressors are often integrated into CUS described above.

Social defeat. The chronic social defeat stress (CSDS or SDS)
paradigm is based on the establishment of a territory by a male
rodent and its defense against unfamiliar male intruders [60, 61].
In this paradigm, a male rodent (the intruder) is placed into the
home cage of another male (the resident). The intruder is
physically confronted and defeated by the resident. The resident
is usually of a more aggressive and larger strain than the intruder.
In rats, the resident is usually paired with a female while the
intruder is individually housed. Conversely, with mice, the resident
is kept isolated whereas the intruder is group-housed. The
resident has also had previous experience of victory in such
encounters. There are many variations of this model that involve
different durations of exposure or include additional threats of
attack. The greatest limitation of this model is that it is almost
exclusively used in males as it is difficult to obtain strong
dominance relationships or aggressive encounters in females.
However, a recent study employed designer receptors exclusively
activated by designer drugs (DREADDs) to promote male
aggression toward females [62]. Using these males, Takahashi
and colleagues were able to induce social defeat in females and
begin to examine some of the underlying neurobiological changes
[62]. Another female model exploits maternal aggression, in which
a non-pregnant female is attacked by a lactating female [63].
Defeated animals show a variety of behavior changes following

defeat. Regarding social behavior, defeated males show a
decrease in social interaction with novel conspecific males
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[64, 65]. They also show a decrease in mating and aggressive
behaviors [66]. These observations are thought to reflect social
withdrawal, discussed above. Social defeat also alters many
nonsocial behaviors including decreased locomotor activity,
reduction in food and water intake, anxiety-related behaviors,
and drug seeking behavior, as well as reduced brain-reward
behaviors seen during ICSS [67–71]. Increased immobility in the
FST has also been observed, while there have been mixed results
detailing effects on sucrose preference [71–74].

Housing conditions. Isolation has been associated with numerous
physical and mental health problems, and several studies have
indicated that loneliness may play a role in the development and
persistence of depression [75–77]. This can be studied in animal
models by single housing animals for a prolonged period of time
(on the order of weeks). Prolonged isolation leads to increased
immobility in the FST, changes in reward-related behaviors as
measured by decreased sucrose preference, changes in sexual
behavior, and drug-associated behaviors, as well as increased
anxiety-like behaviors [78–81]. Studies using male and female
animals have found that both sexes show increased anxiety-
related behavior and decreased sucrose preference in response to
social isolation, though the effects appear to be more prominent
in males [82, 83].
To introduce unpredictability to the housing condition,

researchers have utilized a chronic social instability paradigm
where isolation and crowding conditions are alternated [84–86].
Additionally, animals are rotated among social groups during
those crowding phases. This has been found to lead to
neuroendocrine changes, anhedonia, and increased anxiety-like
behavior [84–86]. Many of these traits are inherited by offspring of
these animals implicating the involvement in stress-induced
epigenetic changes [87]. The advantage of this paradigm is that
it has been found to be effective in both males and females, and is
often incorporated into CUS approaches [84, 88].

Maternal deprivation. A specific form of social isolation is focused
on isolation in young animals as evidence indicates that early life
traumatic experiences are associated with psychopathology
including depression later in life [89]. Maternal deprivation (MD)
models early life stress through daily separation of new born pups
from their mothers during the first few weeks of life. Behavior and
neurobiological changes are then assessed in adolescent or adult
animals. This early life isolation results in persistent neurobiolo-
gical changes, and depression and anxiety-related behaviors can
be observed in adulthood [90–94]. Moreover, this depression-like
behavior can be transmitted across several generations reflecting
epigenetic vulnerability to stress [95].
Adolescent mice exposed to maternal separation show sex-

dependent alterations in behavior in response to the learned
helplessness paradigm, with males demonstrating loss of con-
trollability in an escapable shock condition. In contrast, females
demonstrated motivational impairment in a no-shock condition.
This effect, however, was absent in adulthood as females no
longer displayed helpless behavior [96].
Although maternal deprivation induces the same endocrine

changes in males and females, such as increased corticosterone
levels, sexual dimorphisms have been observed in the neuronal
and behavioral changes induced by maternal deprivation [97].
Several studies in adult rats have shown that separated male rats
exhibit a higher immobility as measured by FST [98–101], as well
as anhedonia [101, 102]. Studies using adult females have found
that maternal separation has no effect on depression-related
behaviors as measured by FST or SPT [102, 103].

Surgical/genetic models
Olfactory bulbectomy. Surgical removal of the olfactory bulbs
(OBX) in rodents leads to a number of behavioral, cognitive, and

neurochemical changes, which are normalized with antidepres-
sant treatment [104]. While there appear to be some differences
between the rat and mouse models, OBX has been a useful
model in the study of antidepressant efficacy [104]. OBX
increases the immobility time in the FST and TST in both rats
and mice [106–108], and causes hyper activity and anhedonia as
measured by the SPT in mice [109–112].
There have been very few studies involving female subjects in

the OBX model and even fewer dedicated to comparing sex
differences. However, male and female OBX animals that have also
been gonadectomized/ovariectomized exhibit higher activity levels
than intact OBX and control animals. The effect of gonadectomy
was more robust in males. Female OBX rats exhibited lower
sucrose preference levels than male OBX rats. This difference was
true for both intact and gonadectomized/ovariectomized rats
[113]. These results suggest that hormones may have activational
effects on activity changes induced by OBX and organizational
effects in the marked anhedonia exhibited by female OBX mice.

Genetic selection/selective breeding. There is a genetic component
associated with depression and a number of studies have sought
to determine these genetic determinants, with dozens of
genetically modified mouse strains associated with depressed
phenotypes [114]. Many studies have used transgenic or knock-
out/knock-in mice as a targeted approach to study specific genes
that might underlie genetic predisposition to depression. An
alternative approach to studying the genetic component of
depression is through selectively breeding for a specific pheno-
type. There are many examples of this approach, but one example
is the Flinders sensitive line rats. These rats have been created by
selectively breeding Sprague–Dawley rats for their hyper-
sensitivity to cholinergic agonists; a characteristic that has been
observed in depressed humans, as well [115]. These rats display
depression-like behavior as shown by increased immobility in the
FST, and reversal of depressive-like behavior has been observed in
response to treatment with a variety of antidepressants [115].
Females do not exhibit enhanced immobility, but instead show
decreased latency to become immobile, in comparison to
Sprague–Dawley controls [116].

Additional models/considerations. Common cognitive deficits in
depression include impairment of concentration and selective
attention towards or processing of negative stimuli. It is believed
that this negative bias serves to increase salience of depressive
elements, thus prolonging and exacerbating depressive episodes
[117], and may partly explain or interact with rumination, which
has been shown to be more prevalent in women [118]. Despite
the prevalence of cognitive dysfunction in depression, many
studies do not incorporate any cognitive function assessment into
their animal models [119, 120]. Even fewer studies have examined
potential sex differences, although it does appear that females
may exhibit more negative bias at baseline [121, 122] comple-
menting evidence for increased negative recall bias in women
[123].
In addition to cognitive dysfunction, there are many homeo-

static changes associated with depression, such as altered sleep
and circadian rhythms, as well as changes in feeding and
metabolism. These somatic symptoms are less frequently incor-
porated into animals models, and more frequently observed in
depressed women [20]. Incorporating these deficits into animal
models would be a clear and necessary step to expand upon
current models in order to gain better insight in the pathophy-
siology underlying depression and antidepressant response. In
parallel, better characterization and understanding of sex differ-
ences in expression of depression symptomatology are key to
developing more valid models in which to further dissect
underlying mechanisms and develop the next generation of
antidepressant treatments.
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ANTIDEPRESSANT TREATMENT
Tricyclic antidepressants (TCAs)
The TCAs are derived from antihistaminic compounds, and the
first, imipramine was introduced in 1957 [124]. They block
reuptake of serotonin and norepinephrine, which is thought to
contribute to their therapeutic action (Fig. 1). The degree of
selectivity of inhibition of serotonin versus norepinephrine
transporters differs among the family of TCAs with desipramine
and maprotiline being most potent at the norepinephrine
transporter and clomipramine being most potent at the serotonin
transporter [125]. In addition to their actions at serotonin and
norepinephrine transporters, TCAs also exhibit anticholinergic,
antiadrenergic, and antihistaminergic activity owing to their
reported side effects [125]. Additionally, at high levels, they can
inhibit sodium channels or cause serotonin syndrome making
them potentially lethal [126] and increasing the risk of suicide by
overdose [127]. This is particularly relevant for female patients as
reports have shown increased suicide attempts by antidepressant
overdose [128].
The therapeutic use of TCAs for treating depression was not

only a significant advancement in the treatment of this disorder,
but it revealed the potential to understand the neurological basis
of depression. Their use has fallen out of favor due to better safety
profile of newer medications, however they are still employed in
treatment-refractory cases. There is also evidence that they may
be more effective in adult men and in older women than SSRIs
[129, 130]. From the successful treatment of depression with TCAs
and studies on serotonergic dysfunction emerged the serotonin
hypothesis of depression.

SSRIs
The serotonin hypothesis of depression has driven antidepressant
development for the better part of six decades, ultimately leading
to SSRIs and later serotonin/norepinephrine reuptake inhibitors
(SNRIs) (Fig. 1). Inhibition of serotonin reuptake leads to increased
activation of the 14 subtypes of serotonin receptor, each with a
unique pattern of expression and activation. An estimated 15.9%
of adult women in the US take antidepressants, compared to 7.7%
of men [131], reflecting the higher rate of depression overall. Six of
the top ten prescribed antidepressants in the US are serotonin-
based antidepressants.
Alongside explosive drug development leading to dozens of

prescribed serotonin-based antidepressants, extensive and thor-
ough basic research continued into the role of monoamine
depletion in depressive symptomatology and has not fully
satisfied the predictions of the hypothesis, with inconsistent and
inconclusive evidence leaving considerable debate as its validity
to explain depression as a single disease [132]. Mirroring the
incompleteness of the underlying serotonin hypothesis is an
incompleteness in patient response to this class of second-
generation antidepressant medications. The response rate to this
first line in antidepressant treatment is around 50%, with 70% of
patient failing to fully remit after a 12-week course [133, 134].
These limitations have guided the most recent quest for the next
generation of antidepressants, discussed in the next section.
However, this too yields resolution in which to examine sex
differences.

Fast acting antidepressants
Drugs targeting the monoamine system have been the standard
of care over the past 50 years, however there are some significant
limitations associated with this class of drugs. Only a fraction of
patients experience relief of depression symptoms upon anti-
depressant administration, and among that fraction of responders
(~30%), it can take weeks to months before patients feel those
effects. Additionally, there are various side effects associated with
these drugs that decrease compliance with drug regimens.
However, there was not a significant shift in focus on novel

antidepressants until the provocative finding that acute adminis-
tration of ketamine could produce rapid (within hours) antide-
pressant effects [135]. This effect has been found to last for up to
2 weeks after a single administration [136, 137]. Furthermore,
ketamine has also been found to be efficacious in treatment
resistant patients, who failed to respond to monoamine-based
antidepressants [136, 137]. This revolutionized the field of
antidepressant research and pivoted the focus of the field to
novel antidepressant mechanisms.
While the abuse potential for ketamine has restricted access to

this treatment to medically staffed environments, these findings
have aided much of the preclinical work on depression and
antidepressant mechanisms. The mechanism of action for
ketamine is a highly debated topic. Ketamine is an ionotropic
glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist
and work has suggested that NMDAR blockade influences
downstream intracellular signaling pathways (Fig. 1). In one
model, this is shown to occur through inhibition of eukaryotic
elongation factor 2 (eEF2) kinase ultimately leading to increased
BDNF signaling, AMPAR insertion, and increased synaptic strength
[138]. Another model suggests that NMDA receptor blockade
increase mammalian target of rapamycin (mTOR) signaling, which
increases synaptogenesis [139]. This was also shown to be the
mechanism of action for another rapid acting antidepressant,
scopolamine, a non-selective muscarinic receptor antagonist [140].
Recent work suggests that it may not be the action of ketamine on
NMDAR that is important for its antidepressant effects, but rather
the action of (2R, 6R)-hydroxynorketamine (HNK), the major
ketamine metabolite found in plasma and brain [141]. Adminis-
tration of HNK was shown to elicit rapid antidepressant effects and
synaptic potentiation, similar to ketamine, however HNK action
does not appear to be through inhibition of NMDARs [141].
Despite the differences between these proposed mechanisms,

they all seem to converge on the idea that ketamine exerts its
antidepressant effects through an increase in activity in neural
circuits associated with mood regulation. This has been key in the
development of novel rapidly acting antidepressants that might
have fewer side effects than ketamine. One approach to minimize
potential side effects has been through targeting receptor
subtypes with region-specific expression. α5-containing γ-amino-
butyric acid type-A (GABAARs) are most strongly expressed in PFC
and hippocampus [142]. The negative allosteric modulators of this
subtype (L-655,708 and MRK-016) elicit rapid antidepressant
action and increased excitatory synaptic strength, similar to
ketamine [143]. However, in contrast to ketamine, these drugs do
not have psychotomimetic or sedative side effects [144].

Alternative neuromodulatory treatments
Despite the array of pharmaceuticals available for depression, a
significant proportion of depressed individuals is treatment–resistant
as discussed above. Alternative strategies have been sought to
alleviate depression symptoms in these patients. Despite differences
in methodology, these techniques are all based upon the idea that
depression results from altered neuronal circuits and stimulating
those circuits can at least partially reverse this altered activity and
produce antidepressant effects. We will only discuss a few such
approaches here.
Electroconvulsive therapy (ECT) is an intervention whereby

electricity is delivered to the brain to induce generalized seizures.
It is effective in treating depression with a roughly 60% remission
rate and is even effective in treatment resistant populations [145,
146]. However, concerns including cognitive side effects, in
particular temporary memory impairment, have limited the
penetration of ECT into broad clinical practice. The induction of
seizure activity alters the function of neuronal circuits, which is
thought to underlie the beneficial effects of ECT in the treatment
of depression. More recent strategies have sought to emulate ECT
with stimulation better targeted to brain regions known to be
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involved in mood regulation, thereby reducing the negative side
effects associated with altering whole brain activity.
Transcranial magnetic stimulation (TMS) uses alternating

magnetic fields to induce electric currents in cortical neurons
[147]. Multiple studies examining TMS targeting the prefrontal
cortex have revealed positive antidepressant effects [148, 149].
Deep brain stimulation (DBS) involves implanting electrodes to
stimulate specific brain regions [150]. These regions include
subcallosal cingulate, ventral anterior internal capsule, and ventral
striatum, which are all involved in regulation of mood and
antidepressant response [150, 151]. Existing evidence is limited, a

few studies using these neuromodulatory approaches have found
equivalent efficacy in both males and females [152, 153]. However,
response to TMS may be modulated by hormone levels as
response in premenopausal women was correlated with estradiol/
progesterone ratio while postmenopausal women were the least
responsive to treatment [154].

SEX DIFFERENCES IN RESPONSE TO ANTIDEPRESSANTS
There is not a clear consensus on whether there are sex
differences in pharmacotherapy antidepressant efficacy, likely
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due to variability in methodology, as well as a dearth of specific
investigation in this regard. A number of studies have shown that
men experience a better therapeutic response to TCAs than
women [130, 155, 156], whereas there is evidence that women
respond better to SSRI treatment than men [129, 130, 157, 158].
This effectiveness was further exemplified in a study of patients
given free choice of clinical interventions followed for up to
12 weeks: women were about 1.5× as likely to achieve remission
as men, with most patients in the study taking either SSRIs or
SNRIs [159]. In conjunction with findings that older women do not
enjoy this superiority and that hormone replacement therapy has
been found to eliminate a poor SSRI response [160], this suggests
a role of female sex hormones in therapeutic response to SSRIs in
particular. Estrogen has subsequently been shown to influence
serotonin synthesis, as well as serotonin receptor binding and
activity [161].
An alternative explanation is that the subtype of depression

determines the antidepressant response. As discussed above, the
presentation of symptoms differs between men and women, and
women tend to show more somatic symptoms associated with
atypical depression, which has been found to respond preferen-
tially to SSRIs [162].
Because of the high incidence of poor or delayed response to

antidepressant therapy, there has been extensive investigation
into potential augmentation of traditional antidepressant phar-
macotherapy. These include other medications with other
indications such as lithium, triiodothyronine, and antipsychotics,
as well as non-pharmacological interventions like bright light
therapy. Such augmentation by estradiol treatment on SSRI
effectiveness was mentioned above, but sex differences exist for
other augmentation strategies as well. For instance, triiodothyr-
onine (T3) has been found to accelerate response to TCA, and this
effect is more pronounced in female patients [163]. Another study
found that supplementing folic acid enhanced the effect of
fluoxetine in women likely due to differences in resulting plasma
folate concentrations [164]. Additional work into current and novel
augmentation strategies may be useful in identifying approaches
to optimize treatment in both males and females.
Currently, fast acting antidepressants are not widely used in

humans; however, a few studies in rodents have suggested that
females may be more sensitive to ketamine. Stress naïve females
show an antidepressant response to a lower dose of ketamine as
compared to males as measured by behavior in the FST [165, 166].
In mice exposed to chronic stress, the long lasting
antidepressant effects of ketamine (7 days post injection) are
more apparent in males [166]. This increased sensitivity is absent
in ovariectomized females and is only restored in animals
receiving estrogen and progesterone [165], suggesting both
hormones are required for the increased sensitivity observed in
females. This was also found to increase hedonic responses to
low-dose ketamine as measured by increased sucrose preference
[167]. In contrast, gonadectomy and testosterone had no effect on
male responses, however, progesterone administration rendered
males sensitive to low-dose ketamine [167]. This implicates an
activational role for estrogen and progesterone in mediating
sensitivity to ketamine.
It should be noted that many studies using the forced swim test

(FST) for screening antidepressants or assessing depression-like
phenotypes have relied on male subjects and assumed that the
behavioral response would be the same in females. However,
conflicting results have emerged from studies that have
considered sex differences (see [168]). Hormone levels do not
appear to play a major role in influencing behavior in normally
cycling rodents, although some studies have found differences
across the estrous cycle. In ovariectomized rats, hormone levels
play a role in modulating FST behavior, with estrogen withdrawal
leading to increased immobility [169], and estrogen administra-
tion leading to antidepressant-like effects [170].

POSSIBLE MECHANISMS UNDERLYING SEX DIFFERENCES
If we consider depression as a result of altered neuronal circuitry,
then differences in antidepressant response can emanate from sex
differences in neuronal circuitry. Therefore, it is important to
discuss sex differences in the neurobiology underlying depression
as well antidepressant response. Here, we will focus on sex
differences in synaptic transmission and include how hormones
may contribute to these differences as the organizational and
activational effects of hormones in generating these differences
has been reviewed extensively elsewhere [8, 9, 11].

Sex differences in synaptic transmission
Dysfunction of a number of brain regions likely underlies the
number of diverse symptoms associated with depression. Indeed,
brain imaging, as well as postmortem anatomical studies have
demonstrated changes in several brain areas including prefrontal
cortex, cingulate cortex, hippocampus, striatum, amygdala, and
thalamus [171–174]. Probing synaptic transmission in these areas
has contributed to our understanding of mechanisms underlying
antidepressant efficacy. Similarly, understanding sex differences in
this synaptic transmission sheds light on the potential mechan-
isms underlying differences in antidepressant efficacy. Using the
animal models described above has allowed researchers to delve
deeper into the neuronal circuitry underlying depression and
antidepressant response.
A number of hypotheses have been put forth in an attempt to

explain the maladaptive changes found in depression. For
instance, the monoamine hypothesis postulates that depression
is caused by a deficiency in monoamines, yet incompletely
explains depressive etiology as discussed above.
The hypotheses associated with depression appear to converge

on a common factor that is a growing area of focus in
understanding the pathophysiology underlying depression and
antidepressant response: changes in synaptic strength. Particular
focus has been dedicated to excitatory synaptic strength as there is
increasing evidence to suggest that chronic stress, which induces
depressive signs, weakens excitatory synaptic structure and function
in multiple regions of the brain associated with depression.
Conversely, antidepressants promote excitatory synaptic transmis-
sion in these same regions (Fig. 1). Differences in these synaptic
changes may be associated with sex-differences in depression and
antidepressant response. Though there are number of brain regions
involved, reviewed in greater breadth elsewhere (e.g. [175]), we will
limit our discussion to the hippocampus, prefrontal cortex, and
nucleus accumbens (NAc) for the sake of brevity.

Hippocampus
The hippocampus plays critical roles in both mood regulation and
higher cognitive functions. It is particularly stress sensitive due to
high glucocorticoid receptor expression and its crucial role in HPA-
axis feedback [176, 177]. Thus, the hippocampus is at a key
intersection of neuronal mechanisms underlying depression.
Patients with MDD exhibit decreased hippocampal volume,
dendritic density, and spine number [178–181]. The hippocampus
sends excitatory projections to regions of the brain important for
reward processing including the NAc [182–184]. This is thought to
be important in modulating the activity of NAc and providing
contextual information associated with reward [185, 186].
Regarding stress, acute elevations of glucocorticoid levels
potentiate hippocampal neurons [187], which inhibits HPA activity
but also may enhance hippocampal function. However, chronically
elevated glucocorticoids, as seen in chronic stress, may damage
hippocampal neurons and impairs their synaptic protein expres-
sion and function [188] and consequently weaken excitatory
synaptic strength [189].
In male rodents, chronic stress results in a retraction of apical

dendrites of pyramidal cells in hippocampal area CA3 [190–194],
decreased spine density on pyramidal cells in hippocampal area
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CA1 [195], a reduction in neurogenesis in the dentate gyrus [196–
198]. Several classes of antidepressants reverse the stress-induced
reduction in dendritic branching [199, 200] and neurogenesis [201,
202] of hippocampal neurons.
The deleterious effects of stress on the hippocampus are also

reflected in alterations hippocampal function. Electrophysiological
studies have revealed weakening of excitatory synapses [188, 189]
or deficits in synaptic plasticity [203–205] in rodent models of
depression and coincide with decreased expression of GluA1 and
mGluR5 [188, 189, 206]. Several classes of antidepressants have
been shown to reverse these changes [143, 189, 199, 200].
The same chronic stressor that produces a reduction in

dendritic complexity in males does not affect apical or basilar
dendritic length of neurons in CA3 pyramidal cells of females
[191], and results in altered spine morphology but no change in
spine density on CA1 pyramidal cells [195]. The hippocampus
expresses high levels of the receptors for estrogen and
progesterone, and these hormones have a profound effect on
hippocampal structure and function. Administration of exogenous
estrogen or progesterone increases spine density [207, 208], and
the natural variation of estrogen levels induces changes in spine
density and shape in CA1 [209, 210]. These estrogen-induced
spines were found to comprise increased synaptic transmission of
single presynaptic inputs onto multiple postsynaptic cells,
suggesting the possibility that estrogen promotes the formation
of new synapses [211]. It is possible that these effects occur at
least in part as a result of estrogen influence on neurotrophin
signaling. Neurotrophins are involved in modulation of dendritic
morphology and spine density in many brain regions including
the hippocampus [212]. Inhibiting downstream neurotrophin
signaling blocks the beneficial effect of estrogen on hippocampal
function [213]. Conversely, BDNF administration increases seroto-
nin receptor expression [214], as well as 5-HIAA and serotonin
turnover [215].
Estrogen itself has numerous modulatory effects on synaptic

transmission. It enhances presynaptic function indicated by
increased neurotransmitter release [216]. Additionally, estrogen
and progesterone modulate the activity of a number of different
neurotransmitter systems through a number of mechanisms
including interactions with receptors, transporters, and enzymes
involved in synthesis [217]. While too numerous to fully discuss
these interactions here, some examples include upregulation of
AMPA and NMDA receptor expression, decreased 5-HT1A receptor
function, and altered SERT expression and activity [217, 218]. This
is relevant for hippocampal function as excitatory synaptic
strength in the hippocampus has been associated with depression
and antidepressant action and serotonin signaling has been
shown to be important in modulating the strength of excitatory
synapses [132].

Prefrontal cortex (PFC)
The PFC is an important site at which cognitive evaluations
associated with depression can influence affect and reward, such
as the controllability of a stressor [219] or the pleasantness of a
stimulus [220]. Patients with depression display decreased volume,
spine density, and reduced activity in the PFC [221], and SSRI
treatment restores normal activity levels [222–224]. These
structural and functional changes are also reflected in many
animal models of depression. Chronic stress results in atrophy of
apical dendrites of pyramidal cells in the PFC and loss of dendritic
spines [225–228], as well as downregulation of AMPA and NMDA
receptor subunits and a decrease in synaptic excitation in layer V
pyramidal cells in the PFC [229].
PFC neuron morphology appears to be sexually dimorphic at

baseline. Unstressed females show decreased apical dendritic
length and reduced apical branch number compared to
unstressed males [230]. PFC morphology also appears to be
modulated by estrogen levels as dendritic branching and spine

density are decreased in ovariectomized rats and increased
following estrogen treatment [231, 232].
Branch length and spine density increase in females in response

to chronic stress, in contrast to males which showed a stress-
induced decrease [233, 234]. This stress-induced increase in apical
dendrite length appears to be dependent on estradiol as
ovariectomy prevented this effect. This sexual dimorphism in
response to stress seems to be developmentally regulated as no
differences are observed between juvenile male and female
animals exposed to stress [235]. This further supports a role for sex
hormones in modulation of neuronal circuits associated with
mood regulation and parallels clinical studies demonstrating the
increase in prevalence of depression in females after the onset of
puberty [236]. Another study comparing the effects of chronic
stress on the PFC of males and females found that while chronic
stress reduced glutamatergic transmission and AMPA and NMDA
receptor expression in males, females remained unaffected [237].
This was due to a protective effect of estrogen, as blocking
estrogen receptors rendered females susceptible to the effects of
chronic stress [237]. Taken together, these studies highlight a
possible neuroprotective effect for estrogens.
Estrogen levels have been correlated with activation of the

prefrontal cortex and modulation of emotional processing and
fear extinction [238–240]. Estrogen therapy increases frontal
cortex activation and verbal recall, a process mediated by the
prefrontal cortex, in peri-menopausal and post-menopausal
women [241]. However, administration of a gonadotropin-
releasing hormone agonist to pre- menopausal women decreases
prefrontal activation and impairs verbal memory [242], revealing a
nuanced role for estrogen action in the prefrontal cortex.
The modulation of structure and activity of PFC neurons may

also be in part through modulation of neurotrophin signaling in
this area. Similar to hippocampus, BDNF expression in the PFC is
decreased in depressed patients, as well as animal models of
depression [243–245], whereas antidepressants increase BDNF
expression as well as TrkB activation [246, 247]. BDNF expression
also seems to be modulated by estrogen as expression was found
to be reduced in the PFC of female rats during proestrus [248].

Nucleus accumbens
A key brain region implicated in the etiology of depression is the
NAc a critical area for regulating reward behavior. Patients with
depression have decreased NAc volume, as well as decreased
activity in response to reward [249, 250]. Decreased spine density
and dendritic branching were observed in some animal models of
depression [251–253], however many others have reported
opposing findings [254, 255]. This may reflect differences in the
models used and shed light on subtypes of depression.
Accordingly, a recent study used neuroimaging biomarkers to
identify subgroups found that increased NAc volume was only
associated with a particular subgroup of depressed patients [256].
These human functional changes in NAc are reflected in rodent
models in which decreased excitatory synaptic strength occurs in
parallel to depression-like changes in behavior [257, 258].
Conversely, increased synaptic strength has been observed in
other models [259]. This region incorporates excitatory informa-
tion from a number of brain regions including the hippocampus
and PFC, gating input from higher brain areas into subcortical
reward networks. Further dissection of these inputs may provide
keen insight into the neuronal circuitry underlying depression and
reward regulation.
Sexual dimorphism is observed at NAc synapses. Spine density

remains consistent through the rostral/caudal extent of the NAc in
males, whereas a gradient exists in females with increased spine
density in more caudal regions [260]. Sex differences are seen
specifically at distal dendrites, with greater spine density, as well
as a greater proportion of large spines in females [261]. Frequency
of miniature excitatory post-synaptic currents (mEPSCs) is also
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greater in females suggesting, in conjunction with structural
findings, that females have more excitatory synapses per cell in
the NAc [262]. Sexual dimorphism observed in the NAc may not
only be a reflection of sex differences specifically in this region but
also of differences in hippocampal and PFC output.
The NAc receives dopaminergic input from the ventral

tegmental area (VTA). The mesolimbic dopamine system is critical
for reward processing, and rewarding stimuli is associated with
dopamine release in regions like the NAc and PFC [263–265]. Sex
differences in this system are thought to mediate sex differences
in motivation. For instance, female rats self-administer low doses
of cocaine at a faster rate as compared to males [266, 267]. Basal
dopamine tone varies with the estrous cycle and parallels changes
in estrogen levels with the nadir during diestrus [268]. This
decreased dopamine tone is also observed in ovariectomized
animals. In contrast, the basal dopamine levels in males are similar
to that of females in proestrus or estrus and castration does not
change these levels. Overall, basal dopamine tone is chronically
higher in males than in females. Estrogen also modulates
stimulated dopamine release in females [269, 270]. Taken
together, this suggests that high basal dopamine levels result in
downregulation of activity, such that when dopamine release is
stimulated the relative increase is less in males than in females
and the behavioral response is proportionally lesser, which could
underlie sex differences in motivation. Yet another mechanism by
which activity of the mesolimbic dopamine system differs
between males and females is in dopamine receptor expression,
which is greater in males as compared to females [271, 272].
Estrogen may also underlie this sexual dimorphism, as estrogen
causes down-regulation of D2 receptor binding in female striatum
[273].
The brain regions discussed here are profoundly intercon-

nected, so sex differences in one area are likely to affect
downstream regions. Much of the understanding we have
regarding the changes in synaptic transmission in depression
has been gleaned from studies in males. Further examination of
synaptic transmission in females both in comparison to males at
baseline, as well as in models of depression will provide key
insight into understanding the pathophysiology underlying this
disorder.

Sex differences in pharmacokinetics
In addition to differences in synaptic transmission, there are many
other physiological factors that can lead to sex differences in
antidepressant response. This has been reviewed extensively
elsewhere [4, 7, 10], so we will only briefly review some of these
differences. Differences in gastric environment, slower rate of
gastric emptying, and longer colonic transit times observed in
women can increase the rate of absorption of antidepressants [4,
7, 10]. In addition, women have a higher percentage of adipose
tissue, which can prolong the half-life of lipophilic drugs, such as
trazodone and bupropion [4, 7, 10]. Differences in metabolism or
clearance of antidepressants can also contribute to higher
concentrations of antidepressants in women due to differences
in hepatic blood flow and cytochrome P450 enzymes [4, 7, 10].
Estrogen is also a substrate for some of the same cytochrome
P450 isozymes as antidepressants, and the presence of both can
shift the metabolism for both [4, 7, 10].

Sex differences in side effects and compliance
Sex differences have been reported in the side effects associated
with antidepressant treatment. Women show decreased toler-
ability of TCAs and tend to report side effects, such as dizziness,
nausea abnormal vision, constipation, and somnolence [130, 274,
275]. Men tend to report greater sexual dysfunction and urinary
complaints [130, 275]. As to whether these side effects contribute
to differences in compliance remains unclear. Non-compliance
rates have been found to be higher for TCAs, though this was not

found to be a sex-specific effect [276]. Another study found sex
differences in compliance that varied by age but were not
differentiated based on antidepressant type [277]. Further
research into this topic as well as other sex-based differences in
barriers to continuing care may yield further insight into ways to
increase effective depression treatment programs.

DISCUSSION
There are clearly many differences between males and females
that impact depression and antidepressant efficacy. Despite the
fact depression is more common in women, the vast majority of
the basic research focus has been dedicated to studying males.
While this narrowed focus has aided in attempting to simplify a
complex disease and thus reducing variability due to baseline sex
differences, it ignores a large patient population. Because the
most widely used assays have been optimized in males, this
provides a significant barrier to the inclusion of females in
subsequent studies. As we have discussed above, sex differences
have been reported in many of the factors associated with
depression including precipitation and presentation of the
disorder. Therefore, it may be neither pertinent to force males
and females into the same model nor practical use the same
behavioral outcomes to assess them. It may, instead, be more
advantageous to model depression in males and females
separately focusing on endophenotypes relevant to each
sex. This approach has the potential to reveal new mechanisms
and biomarkers associated with depression, as well as novel
targets for antidepressant development. While unraveling
sex differences in depression may seem to complicate our
understanding of an already complicated disease, understanding
the underlying neurobiology of sex differences may be a useful
means to unraveling this debilitating disease in both men and
women.
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