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Loss of PTPN22 abrogates the beneficial effect of cohousing-
mediated fecal microbiota transfer in murine colitis
Marianne R. Spalinger1,2, Marlene Schwarzfischer1, Larissa Hering1, Ali Shawki2, Anica Sayoc2, Alina Santos2, Claudia Gottier1,
Silvia Lang1, Katharina Bäbler1, Annelies Geirnaert3, Christophe Lacroix3, Gabriel E. Leventhal4, Xuezhi Dai5, David Rawlings5,
Andrew A. Chan6, Gerhard Rogler1,7, Declan F. McCole2 and Michael Scharl1,7

Fecal microbiota transfer (FMT) is a very efficient approach for the treatment of severe and recurring C. difficile infections. However,
the beneficial effect of FMT in other disorders such as ulcerative colitis (UC) or Crohn’s disease remains unclear. Furthermore, it is
currently unknown how disease-associated genetic variants in donors or recipients influence the effect of FMT. We found that
bacteria-transfer from wild-type (WT) donors via cohousing was efficient in inducing recovery from colitis in WT mice, but not in
mice deficient in protein-tyrosine phosphatase non-receptor type 22 (PTPN22), a known risk gene for several chronic inflammatory
diseases. Also cohousing of PTPN22-deficient mice with diseased WT mice failed to induce faster recovery. Our data indicate that
the genetic background of the donor and the recipient influences the outcome of microbiota transfer, and offers a potential
explanation why transfer of fecal microbes from some, but not all donors is efficient in UC patients.

Mucosal Immunology (2019) 12:1336–1347; https://doi.org/10.1038/s41385-019-0201-1

INTRODUCTION
The human intestine is populated with up to 1014 bacteria that
form a complex ecosystem and have a tremendous impact on our
health.1,2 For several diseases, including obesity, diabetes,
rheumatoid arthritis, liver diseases, and inflammatory bowel
disease (IBD), shifts in the intestinal microbiota composition and
a reduction in overall bacterial diversity as compared with healthy
individuals have been described.3,4 However, it is still unclear
whether those changes are the result of the underlying condition
or if they functionally contribute to disease development/
progression.5

Therapeutic transfer of fecal microbiota from healthy subjects to
patients suffering from mainly intestinal diseases is increasingly
attempted. In severe cases of recurring Clostridium difficile
infections, fecal microbiota transplantation (FMT) has been shown
to be very efficient,6–8 but the therapeutic value of FMT in other
intestinal and non-intestinal disorders is still unresolved,9 and
conflicting data from clinical trials using FMT in IBD have been
reported.10–14 There is evidence that in the IBD subform ulcerative
colitis (UC), the successful outcome of FMT might depend on the
microbial composition of the donor,15 leading to the phenomenon
of so-called “super-donors” that induce remission in more than
90% of transplanted cases, while most donors have success rates
below 50%.10–14,16 Thus, it is important to define what constitutes
a “successful” donor for the treatment of UC. Given the impact of
genetic variants on IBD pathogenesis, the genetic background of
the host as well as of the donor might exert a prominent role in
therapeutic success.

Host genetic factors are known to influence the susceptibility to
develop disease, and to date, 240 genetic loci have been
identified that contribute to the relative risk to develop IBD.17–20

There is clear evidence that some of these genetic variants affect
microbiota composition,21 but it is not known how genetic
variants affect the outcome of FMT. A variant in the gene locus
encoding PTPN22 results in an altered-function protein product
and has been shown to protect from CD,22 but at the same time
enhances the risk of developing auto-immune disorders such as
rheumatoid arthritis or type-I-diabetes.23–26 PTPN22 mRNA and
protein expression is reduced in IBD patients,27 and PTPN22-
deficient mice are more susceptible to dextran sodium sulfate
(DSS)-induced colitis,28 while mice carrying the autoimmunity-
associated variant are protected from colitis onset,29 effects
dependent on changes in the intestinal microbiota.30 Further, we
recently found that presence of the autoimmunity-associated
variant in IBD patients is associated with altered intestinal
microbiota composition.31

Assessing the role of genetic factors for the successful outcome
of FMT in UC in humans is difficult: FMT is still an experimental
treatment for colitis, hence patient cohorts in FMT trials are
typically not large enough to stratify according to genotypes in
risk genes, and the genetic makeup of a given patient is often
complex including several risk genes. Furthermore, donors are
usually not genotyped for IBD risk genes. To overcome these
drawbacks, we performed a study using cohoused mice to
systematically address the role of the risk-gene PTPN22 on
success of microbiota transfer. Specifically, we used the DSS-
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induced and naïve T-cell transfer models of colitis in mice carrying
the autoimmunity-associated variant in PTPN22 as well as PTPN22-
deficient mice.

RESULTS
Cohousing of DSS-treated mice with healthy littermates promotes
recovery
First, we addressed whether transfer of microbiota from healthy
mice can promote recovery from acute colitis. For this aim, we
treated C57BL/6 mice with 2% DSS in the drinking water for
7 days. At day 8, DSS was removed and one group of mice was
cohoused with healthy littermates. Due to coprophagy, cohousing
results in fast transfer of microbiota between mice in the same
cage.32 The cohoused group recovered earlier (Fig. 1a) and 11 days
after DSS removal, cohoused animals showed reduced intestinal
inflammation (less pronounced shortening of the colon, reduced
levels of myeloperoxidase, and reduced histological colitis scores
in the terminal colon when compared with non-cohoused DSS-
treated mice; Fig. 1b–d).

Cohousing results in faster normalization of the intestinal
microbiota during recovery from DSS
To analyze alterations in the intestinal microbiota upon DSS
induction and during recovery, we collected stool before start of
the experiment (day 0), just before cohousing/DSS removal (day
8), 3 days after DSS removal (day 11) and at the end of the
experiment (day 17). As expected, DSS treatment resulted in
reduced bacterial diversity (Fig. 2a) and a clear shift in bacterial
composition (Fig. 2b, c; MANOVA of the first two PC on day 8, DSS
vs. H2O: F(2,14)= 13.8, p= 2.4 × 10−6). In particular, we observed
an increase in Akkermansiaceae (Akkermansia muciniphila) in DSS-
treated mice (ANOVA of log relative abundances: F(1,14)= 143,
p= 9.6 × 10−9). A more detailed investigation on the individual
amplicon sequence variants (ASV) level revealed additional ASVs
that were differentially abundant in DSS-treated mice relative to
control mice (Supplementary Fig. 1a, b). These changes were
transient, and bacterial composition normalized upon recovery
from colitis. Of note, however, normalization of the microbiota was
faster in cohoused DSS-treated mice (Fig. 2; MANOVA of the first
two PC on day 11, cohoused vs. alone: F(2,6)= 3.71, p= 0.0346). In
particular, five ASVs that significantly changed as a result of DSS
treatment reverted already on day 11 in cohoused mice
(Supplementary Fig. 1c). Interestingly, we also observed changes
in the microbiota of the healthy mice that were cohoused with
DSS-treated animals: on day 11 the cohoused healthy animals
converged with their DSS cohoused counterparts (Fig. 2b, c), in
particular through a decrease in the abundance of Akkermansia-
ceae in the cohoused DSS mice and an increase in the cohoused
healthy mice. Taken together, this suggests that cohousing results
in transfer of microbiota, which might crucially contribute to the
observed faster recovery.
Though segmental filamentous bacteria (SFB) might influence

immune responses in the intestine, in our mouse colony
abundance of SFB was rather low and did not differ in cohoused
vs. non-cohoused mice (Supplementary Fig. 2a–c), suggesting that
SFB do not play a prominent role in the observed effects. In line
with changes in microbiota composition, we also observed a shift
in the fecal abundance of the short chain fatty acid butyrate,
which was decreased in DSS-treated mice, an effect less
pronounced in DSS-treated mice cohoused with healthy indivi-
duals (Supplementary Fig. 2d). Other prominent short chain fatty
acids were not affected by cohousing (Supplementary Fig. 2e, f).
To assess whether the beneficial effect of cohousing was due to

either microbiota transfer or other factors, we next gavaged DSS-
treated mice with the cecum content from either healthy control
mice, or with cecum content from DSS-treated mice. Cecum
content was used for gavages since the cecum is the main

fermentation site in the mouse digestive system, and DSS-induced
changes were similar in cecum content and feces (own
unpublished observation). DSS-treated mice receiving cecum
content from healthy mice gained weight faster than mice that
did not receive cecum content or cecum content from DSS-
treated mice, and showed reduced signs of intestinal inflamma-
tion at the end of the experiment (Supplementary Fig. 3). This
indicates that the beneficial effect of cohousing is indeed
mediated via transfer of microbiota.

Cohousing ameliorates T-cell-mediated colitis
Having shown that cohousing promotes recovery in chemically
induced colitis, we next investigated whether cohousing also
promotes health in an immune-cell-mediated colitis model. For
this aim, we transferred naïve T cells into RAG1−/− hosts, which
resulted in first symptoms of colitis 20 days later. One group of
RAG1−/− was then cohoused with healthy wild-type (WT) mice. Of
note, in cohoused RAG1−/− mice, disease severity stabilized
(Fig. 3a), and 2 weeks after start of the cohousing, determination
of spleen weight, colon length, and histological assessment of the
colon revealed less severe colitis in cohoused RAG1−/− mice when
compared with non-cohoused RAG1−/− mice (Fig. 3b–e). Again,
16S sequencing revealed that cohousing induced a pronounced
microbiota shift (Fig. 3f; ANOVA of PC1: F(3,15)= 363, p= 3.18 ×
10−14, Tukey’s HSD: RAG−/− T-cells non-cohoused/no T cells >
RAG−/− T-cells cohoused, p= 10−11, RAG−/− T-cells cohoused >
healthy WT donors, p= 0.00131) toward the microbiota of healthy
donors. This indicates that cohousing-induced microbiota transfer
not only reverts DSS-induced microbiota alterations, but might
also modulate host defense and/or immune mechanisms.

Cohousing promotes recovery of the epithelial barrier and
suppresses induction of Th1 cells in the lamina propria
Next, we investigated the host mechanisms underlying the
enhanced recovery from colitis in cohoused mice. As expected,
DSS treatment resulted in pronounced infiltration of macrophages
and granulocytes into the lamina propria (Supplementary Fig. 4a,
b) and there was accumulation of T cells, including CD4+ T helper
(Th) cells, CD8+ cytotoxic T cells as well as IFN-γ+ Th1 and FoxP3+
regulatory T cells in the lamina propria from day 13 onward. In
contrast, a significant accumulation of Th17 cells was only
observed on day 15, a time point when CD8+ cells decreased to
normal levels (Fig. 4a, b, Supplementary Fig. 4c–f). Cohousing did
not affect numbers of infiltrating granulocytes and macrophages
(Supplementary Fig. 4a, b). However, the accumulation of CD3+
cells, particularly of CD4+ Th1 cells at day 13 and 15 was almost
completely prevented (Fig. 4a, b). Since we observed a reduction of
myeloperoxidase (MPO) levels in cohoused mice, we further
investigated whether cohousing affects granulocyte function.
There was a slightly enhanced level of Mpo, Lyz2, and Nos2 mRNA
in granulocytes from cohoused vs. non-cohoused mice (Fig. 4c),
while degranulation capacity was decreased (Fig. 4d), indicating
that cohousing modulates granulocyte function.
While in non-cohoused DSS-treated mice, proliferation of

intestinal epithelial cells (IEC) (indicated by Ki67 IHC staining)
was maximal at day 13 and 15, IEC proliferation was already very
high in cohoused mice at day 11 (Fig. 4e), and was not restricted
to base of the crypts, suggesting that cohousing promotes IEC
proliferation and mucosal regeneration.
As a marker for intestinal barrier disruption, after gavage

with fluorescein isothiocyanate (FITC)-dextran, FITC-dextran levels
in the serum were high at day 8 in all DSS-treated mice, but
further increased in non-cohoused mice at day 11 and stayed at
that level until day 13 (Fig. 4f). In cohoused mice, in contrast, FITC-
dextran levels did not further increase at day 11 and normalized
much faster (Fig. 4f). Taken together, this indicates that cohousing
promotes IEC proliferation, epithelial barrier reconstitution,
suppresses granulocyte activation, and prevents the accumulation
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of potentially pathogenic Th1 cells. To assess whether Th1 cells
indeed play a role in delaying recovery from acute DSS-induced
colitis, we treated mice with an inhibitory anti-IFN-γ antibody. Of
note, this treatment resulted in faster recovery (Supplementary
Fig. 5), indicating that Th1 cells indeed play a role in maintaining
colitis after acute DSS treatment. Nevertheless, cohoused mice
recovered even faster than mice undergoing anti-IFN-γ treatment,
indicating that this is not the only factor contributing to faster
recovery in cohoused mice.

The efficacy of cohousing depends on the genetic makeup of the
healthy “donor” mice
When addressing the expression of a series of IBD-associated
genes (not shown) in cohoused vs. non-cohoused DSS-treated
mice, we observed profound changes in Ptpn22 mRNA expression.
Ptpn22 mRNA levels were only moderately enhanced in non-
cohoused DSS-treated animals, but highly increased in cohoused
counterparts (Fig. 5a), which prompted us to further investigate
the role of PTPN22 in mediating the beneficial effect of cohousing.
Further, we have previously shown that loss of PTPN2 or presence
of a disease-associated variant in the gene encoding PTPN22
results in changes in microbiota composition.30 For this aim, we
cohoused WT DSS-treated mice with healthy PTPN22 knockout
(PTPN22−/−) mice or mice that express an altered-function
PTPN22 variant that protects from CD onset (619W mice).
PTPN22−/− mice have previously been reported to be more
susceptible to acute DSS-induced colitis, while 619W mice are
protected.28,29 Interestingly, when WT mice were cohoused with
PTPN22−/− mice they did not recover faster than non-cohoused
mice, while presence of the 619W variant did not alter the

beneficial effect of cohousing (Fig. 5b, c). Also in the naïve T-cell
transfer model of colitis, cohousing with PTPN22−/− mice did not
promote recovery nor inhibited disease progression (Fig. 5d, e).
This indicates that the genetic background of the healthy donor
affects the beneficial effect of cohousing.

Changes in microbiota composition of PTPN22−/− mice result in
failure to promote microbiota normalization
To address why cohousing with PTPN22−/− mice was unable to
promote recovery, we analyzed the composition of the intestinal
microbiota in WT, PTPN22−/− and 619W mice. In agreement with
the previous experiment, DSS-treated mice showed an increase in
Akkermansiaceae, but additionally also increases in the relative
abundance of Prevotellaceae, Muribaculaceae, Erysipelotrichaceae
on day 8 (Supplementary Fig. 6). Consistent with previous
studies,30 PTPN22−/− mice harbored a different microbiota with
decreased abundances of Helicobacteraceae, Deferribacteraceae,
and trends for increased Akkermansiaceae but decreased Desulfo-
vibrionaceae (Supplementary Fig. 6). Many individual ASVs were
differentially abundant in PTPN22−/− mice compared with WT
mice, but not in 619W mice (Supplementary Fig. 7). Both
cohoused WT and 619W mice showed a slight decrease in
Bacteroidaceae on day 12, while non-cohoused WT DSS mice and
the cohoused PTPN22−/− mice showed an increase in Bacter-
oidaceae (Supplementary Figs. 6 and 7). While these changes in
cohoused DSS mice were subtle, all cohoused untreated mice
transiently converged toward a microbial composition that was
more similar to their cohoused DSS counterparts (Fig. 5f and
Supplementary Fig. 6). Similar effects were observed in the
transfer colitis model (Supplementary Fig. 8). The effect of

H 2
2

O al
on

e

H
O co

DSS

DSS co
H 2

O

DSS al
on

e

H 2
2

O al
on

e

H
O co

DSS

DSS co
H 2

O

DSS al
on

e

H 2
2

O al
on

e

H
O co

DSS

DSS co
H 2

O

DSS al
on

e

H 2
2

O al
on

e

H
O co

DSS

DSS co
H 2

O

DSS al
on

e

H 2
2

O al
on

e

H
O co

DSS

DSS co
H 2

O

DSS al
on

e
0

2

4

6

8

10

0

200

400

600

800

1 3 4 5 6 7 8 9 10 11 12 13 14 15 17
–20

–10

0

10

Days in experiment

**
***

Start co-housing *

0

1

2

3

4

5

In
fil

tra
tio

n 
sc

or
e

0

1

2

3

4

0

2

4

6

8

E
pi

th
el

ia
l d

am
ag

e 
sc

or
e

To
ta

l h
is

to
lo

gy
 s

co
re

**

Co-housed

H
2O

 
D

S
S

M
P

O
 a

ct
iv

ity
 [A

.U
.]

a b c

d

C
ol

on
 le

ng
th

 [c
m

]

W
ei

gh
t c

ha
ng

e 
[%

]

**

H2O alone
H2O coDSS
DSS alone
DSS coH2O

Alone

I:0 E:0 I:0.5 E:0

I:3.5 E:3 I:2.5 E:2

Fig. 1 Cohousing promotes recovery in acute DSS colitis. Acute colitis was induced in WTmice via administration of 2.5% DSS in the drinking
water for 7 days. At day 8, half of the DSS-treated mice were cohoused with healthy WT littermates. aWeight development (mean ± SEM, n= 8
per group), b colon length at the end of the experiment (day 17), cmyeloperoxidase (MPO) levels in colon tissue (day 17), and d representative
pictures and histological scoring from H&E-stained sections from the terminal colon (day 17). Indents in the pictures show infiltration (I) and
epithelial damage (E) scores of the image. Each dot represents one individual mouse; asterisks denote significant differences (*p < 0.05, **p <
0.01, ***p < 0.001, Mann–Whitney). Representative results from one out of four independent experiments

Loss of PTPN22 abrogates the beneficial effect of cohousing-mediated. . .
MR. Spalinger et al.

1338

Mucosal Immunology (2019) 12:1336 – 1347



PTPN22-depletion on the intestinal microbiota seems to be
dominant and gene-dose dependent, since PTPN22−/− mice
showed a distinct microbiota composition from their WT
littermates and heterozygous siblings showed an intermediate
microbiota (Supplementary Fig. 9).

Genetic background of the diseased “recipient” determines
success of cohousing
When PTPN22−/− mice were subjected to DSS treatment,
neither cohousing with WT nor with PTPN22−/− mice

promoted recovery (Fig. 6a, b). In contrast, DSS-treated 619W
mice recovered faster when cohoused either with WT or 619W
donors, and there was no difference between 619W and WT
donors, indicating that presence of the 619W variant does not
further improve the beneficial effect of cohousing (Fig. 6c, d).
These results were fully confirmed in histological assessment of
colitis severity (Fig. 6e, f). Of note, the failure to respond to the
beneficial effect of cohousing seemed not to be due to more
severe colitis in PTPN22−/− mice, since cohousing also failed to
promote recovery in PTPN22−/− mice subjected to a lower
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dose of DSS, which showed mild colitis (Supplementary
Fig. 10).
As reported previously,30 DSS-treated PTPN22−/− mice pre-

sented a strong shift in the intestinal microbiota composition on
day 8 (Fig. 6g, Supplementary Fig. 11), primarily characterized by
increased relative abundances of Erysipelotrichaceae (Supplemen-
tary Fig. 12a). The microbiota further changed from day 8 to day
12 and to day 16, though without any indication of convergence
towards the healthy mice (Fig. 6e and Supplementary Fig. 12a).
In line with our previous findings,30 DSS-treated 619W mice also

presented a strongly shifted microbial composition on day 8,
equivalently characterized by an increase in Erysipelotrichaceae
(Supplementary Figs. 11 and 12b, c). Upon cohousing, the
microbiota converged more closely toward their cohoused
counterparts. Importantly, 619W displayed a baseline microbial
community that differed from WT mice (increased Erysipelotricha-
ceae and reduced Akkermansiaceae), and those DSS mice that
were cohoused with WT mice converged toward the WT mice,

despite their own 619W genotype (Fig. 6g and Supplementary
Fig. 12b, c). This shift was partly reduced on day 16, with the
microbiota returning to a composition that resembled that of
healthy 619W mice.

Th1 responses are not suppressed in WT mice cohoused with
PTPN22−/− mice
Having observed that cohousing promotes barrier recovery and
suppresses Th1 cell induction in the inflamed intestine in WT mice,
we next analyzed whether these effects are also present in WT
mice upon cohousing with PTPN22−/− or 619W mice. In line with a
failure to induce recovery, cohousing of DSS-treated WT mice with
healthy PTPN22−/− mice was not able to suppress the accumula-
tion of Th1 cells at day 15, while cohousing with WT or 619W mice
clearly prevented Th1 accumulation (Fig. 7a). Further, in WT mice
cohoused with PTPN22−/− mice, proliferation of IEC was reduced
at day 11 when compared with DSS-treated WT mice that were
cohoused with either healthy WT or 619W mice (Fig. 7b). In line
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with a role for granulocytes in mediating the observed effects of
cohousing, granulocytes from mice cohoused with PTPN22−/−

donors did not show differences in Mpo mRNA expression or
decreased degranulation capacity (Fig. 7d, e). In addition,
PTPN22−/− granulocytes showed reduced MPO expression (Fig. 7f).
This clearly indicates that cohousing with PTPN22−/− mice fails to
induce recovery via failure to suppress granulocyte activation, pro-
inflammatory Th cell accumulation, and inability to promote
barrier reconstitution.

DISCUSSION
In this study, we investigated the therapeutic concept of
microbiota transfer via cohousing using mouse colitis models
and assessed how transfer of healthy microbiota affects recovery
from intestinal inflammation. We found that the beneficial effect
of cohousing critically depends on the genetic background of the
donor and the recipient, an observation that might be of great
relevance in the clinical setting.
As a mode of action, we demonstrated that cohousing

promotes recovery from colitis via induction of earlier epithelial

cell proliferation and restoration of a functional epithelial barrier,
while suppressing (excessive) granulocyte activation and induc-
tion of Th1 cells. Deletion of the IBD-associated gene PTPN22 in
donor or recipient mice abrogated these beneficial effects. This
clearly indicates that the genetic makeup of the donor, as well as
of the recipient crucially determines the beneficial effect of
microbiota transfer, which might be of high clinical relevance for
the selection of suitable donors and for prediction of treatment
success.
Most experimental studies addressing the effect of certain

microbes on intestinal health used either germ-free or antibiotic-
treated mice. However, these models poorly reflect the real-life
situation in IBD patients receiving FMT, since those patients are
usually not premedicated with antibiotics. Furthermore, germ-
free mice have severe defects/alterations in the architecture of the
intestinal immune system (reviewed in ref. 33), a factor that
obviously plays a central role in the development of intestinal
disorders in general, and in IBD in particular. In our model,
microbiota is transferred via cohousing, which—due to copro-
phagy in mice—results in efficient transfer of the intestinal
microbiota between mice in the same cage. From a microbe’s

a b

c

e f

d

Fig. 4 Reduced induction of Th1 cells, altered granulocyte function, and more proliferating epithelial cells in cohoused mice. Acute DSS colitis
was induced in WTmice via administration of 2.5% DSS in the drinking water for 7 days. At day 8, half of the DSS-treated mice were cohoused
with healthy littermates and mice sacrificed just before cohousing (day 8), 3 days after start of cohousing (day 11), 5 days after start of
cohousing (day 13), or 7 days after start of cohousing (day 15). a IHC staining for CD3 of terminal colon sections, b flow cytometric
quantification of IFN-γ-producing CD3+CD4+ cells; c Mpo, Lyz1, and Nos2 mRNA expression levels normalized to Actb and d degranulation
capacity in colonic lamina propria granulocytes at day 15; e IHC staining for the proliferation marker Ki67 on terminal colon sections. f Mice
were starved for 6 h prior to gavage with FITC-Dextran (4 kDa). 1 h later, level of FITC-Dextran was quantified in the serum. Each dot represents
one individual mouse; asterisks denote significant differences (*p < 0.05, **p < 0.01, Mann–Whitney). Depicted are results from one out of two
independent experiments
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point of view, this closely reflects the situation in IBD patients,
since in both models and in IBD patients the transferred
microbiota encounters an already colonized host. Nevertheless,
cohousing has the disadvantage that the amount of transferred
microbiota and the direction of transfer cannot be controlled.
However, since transfer of microbiota via oral gavages with a
defined amount of donor material was equally efficient in terms of
disease outcome, we assume that cohousing is an adequate way
to study (fecal) microbiota transfer in already colonized hosts.
Previous studies have assessed the effect of (genotype-

mediated) changes in the micobiota composition on colitis
severity/susceptibility.32,34,35 However, these studies assessed
how changes in the microbiota before colitis induction affect

disease course, while our study assessed how the genetic makeup
of microbiota donors affects the beneficial effects of microbiota
transfer/cohousing after disease induction when colitis is already
present.
In cases of recurrent C. difficile infections it is suggested that

FMT alleviates dysbiosis and restores a normal, healthy microbiota
in the gut that is resilient to C. difficile overgrowth.7,36 In contrast,
the mode of action of how FMT promotes induction/maintenance
of remission in colitis is less clear. In our model, cohousing
promoted normalization of the microbiota composition, and in
those mice where normalization of the microbiota was not
observed (i.e., in recipients that were cohoused with PTPN22−/−

donors), no induction of faster recovery was observed. This
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indicates that the beneficial effect of cohousing might be caused
via alleviation of dysbiosis. Of note, cohousing was efficient in
both a model of epithelial injury and in immune-cell-mediated
colitis. In line with this, we observed that cohousing promoted
growth of IEC and barrier reconstitution, but also affected
granulocyte function and Th cell subsets. Recent publications
showed that the composition of the microbiota might crucially
affect the outcome of FMT, and in general, higher bacteria
richness positively influenced the effect of FMT.13–15 Likewise,
increased levels of Ruminococcaceae and Lachnospiraceae were
associated with better response to FMT.13,15,37 However, neither
this present study, nor our recently published report on microbial
changes in PTPN22−/− mice30 indicated a specific bacterial strain
or group that was clearly associated with recovery from colitis
upon cohousing, or specific strains that were missing in PTPN22−/

− mice that would explain why cohousing with PTPN22−/− mice
did not promote recovery. Another explanation for the failure of
cohousing to induce recovery in PTPN22−/− mice might be the
fact that those mice suffer from a more severe disease than their
WT littermates. Nevertheless, when PTPN22−/− mice were
subjected to mild DSS colitis, cohousing still failed to promote
recovery, indicating that disease severity is not the only factor
preventing response to cohousing in those mice.
Regarding immune cells, Th cells showed interesting patterns in

response to cohousing. While cohousing suppressed DSS-induced
Th1 accumulation, frequencies of Th17 cells were not affected.
Although connoted with inflammation,38,39 Th17 are abundant in
healthy colons40 and exert important functions for immunity

against extracellular bacteria and fungi,41 and normal production
of IL17 seems to be important to prevent systemic dissemination
of pathogens.42 Th1 and their hallmark cytokine IFN-γ, in contrast,
have been implicated in driving intestinal inflammation and tissue
damage in murine colitis models.43,44 Furthermore, genome-wide
association studies linked SNPs around the IFNG locus and
enhanced IFNG expression with IBD.45,46 Certain bacteria promote
specific T-cell responses, e.g., SFB drive the development of Th17
cells.47 Likewise, specific bacteria in healthy mice might suppress
the induction of Th1 cells. This implicates that in colitis microbiota
transfer via cohousing might act in a dual mode, on one hand via
alleviating dysbiosis, and on the other hand via promotion of an
intact epithelial barrier and suppression of exacerbated immune
responses.
Aside from T cells, we also found differences in granulocyte

function upon cohousing, an effect not observed upon cohousing
with PTPN22−/− mice. These findings are partially in line with
reports that show regulation of neutrophil migration and
activation by PTPN22.48,49 This indicates that granulocytes might
be importantly involved in determining the beneficial effects of
cohousing. However, additional functional studies would be
necessary to clarify the role of granulocytes in FMT, and especially
studies in humans receiving FMT are needed to understand
whether granulocytes are important in the human setting.
Of high interest for future studies on possible therapeutic

approaches using FMT are our findings that the genetic back-
ground of donor and recipient affected the outcome of microbiota
transfer upon colitis induction. In particular, loss of PTPN22
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abrogated the beneficial effect of cohousing. PTPN22 is an
important regulatory molecule involved in T- and B-cell
biology50,51 as well as in controlling monocyte/macrophage
responses to interferons,52 autophagy,53 and inflammasome
activation.29 Alterations in all of these factors can influence the
composition of the intestinal microbiota,54–57 and indeed
PTPN22−/− donor mice as well as PTPN22−/− recipients showed
changes in the composition of the intestinal microbiota.
Consistent with reluctance to faster recovery upon cohousing,
Helicobacteraceae, which contain potential pathobionts,58 were
elevated in PTPN22−/− mice. However, Deferribacteraceae and
Desulfovibronacea (both reduced in PTPN22−/− mice) are
described to increase in murine colitis models, and it has been
suggested that they might be an indicator for disease activity.59,60

Hence, it appears counterintuitive that these bacterial families are
decreased in PTPN22−/− mice. However, increased levels of
Akkermansiaceae at baseline might contribute to enhanced
susceptibility for colitis, non-response to cohousing, and the lack
of ability to induce recovery via cohousing. Akkermansiaceae are
mucus-degrading bacteria that increase during colitis induction in
animal models.59 Nevertheless, there is a study showing that in
human IBD Akkermanciaceae levels are clearly decreased, while
other mucin-degrading bacteria are increased.61 Although these
changes are interesting, we did not find specific bacteria that
predicted the success of cohousing, and additional studies are
required to address which bacteria are causatively involved in
promoting recovery in mice cohoused with WT donors.
Taken together, we have demonstrated that microbiota transfer

via cohousing is an efficient method to induce recovery from
colitis in mouse models of intestinal inflammation. This effect is
mediated via promotion of a faster normalization of the
microbiota in diseased mice, induction of earlier barrier recon-
stitution, and suppression of potentially pathogenic T-cell
populations. In addition, our data demonstrate that genetic
factors in donors and hosts crucially affect the outcome of
microbiota transfer. This is of great importance for clinical practice,
since it lays the groundwork for future FMT studies with the aim of
defining and selecting more efficient donors. Nevertheless, it will
be of importance to validate the findings of our study in the
human setting.

METHODS
Mice, colitis models, and cohousing
PTPN22-deficient (PTPN22−/−) mice in a C57B/6 background were
obtained from Andrew C. Chan from Genentech (San Francisco,
California)62 and crossed with WT mice. A local colony of
heterozygous mice was maintained for breeding of PTPN22−/−

and WT littermates. No heterozygous mice were used for the
studies except for Supplementary Fig. S9, where the difference in
microbiota composition between WT, PTPN22+/−, and PTPN22−/−

littermates was assessed. Mice carrying the 619W variant in the
PTPN22 gene in a C57BL/6 background were obtained from D.
Rawlings at the Children’s Hospital in Seattle (University of
Washington School of Medicine, Seattle, Washington),63 bred with
WT mice, and a local colony of heterozygous mice was maintained
in our facility for breeding of 619W and WT littermates. In
experiments involving PTPN22−/− and 619W mice, a mix of WT
littermates from both breeding colonies were used. All animal
experiments were conducted according to Swiss animal welfare
legislation and were approved by the local animal welfare
commission (Tierschutzkommission des Kantons Zürich). DSS
colitis64 was induced by administration of 2.5% DSS in the
drinking water for 7 days. At day 8, water was exchanged to
normal drinking water to allow recovery from colitis. For transfer
colitis,65 naïve T cells (CD4+, CD62Lhigh, CD44low single cells) were
sorted from the spleen of donor mice and 5 × 105 cells injected
intraperitoneally into RAG2 deficient hosts. At start of cohousing

(day 8 of acute DSS-induced colitis, day 18 for transfer colitis), all
mice were transferred into fresh cages. For IFN-γ inhibition, mice
were injected at experimental days 8, 11, and 14 with 1 mg/kg
anti-IFN-γ (clone XMG1.2; BioXCell West Lebanon, NH).

Analysis of colitis severity
Colitis severity was monitored daily by assessing body weight
development, stool consistency, general appearance, and activity
of each mouse according to the disease activity index previously
described for colitis experiments.27 At the end of the experiment,
animals were euthanized and colon length and spleen weight
analyzed as indirect measures of colitis severity. MPO activity was
measured in 0.5 cm long colon pieces as described,27 and sections
from paraffin-embedded terminal colon pieces were hematoxylin/
eosin stained using standard protocols27 to determine the extent
of colitis by histology. A well-established and previously described
scoring system was used to determine the severity of colitis in
histological sections.27

16S sequencing and analysis of microbiota
16S sequencing and analysis was performed according to
standard methods and described in detail in Supplementary
methods. In brief, stool was collected at indicated time points and
stored at −80 °C until isolation of genomic DNA using the MoBio
PowerLyzer Soil Kit from Qiagen (Thermo Fisher Scientific).
Samples were then sent to Microsynth (Balgach, Switzerland) for
sequencing of the V4 hypervariable domain in the 16S ribosomal
DNA using the primers pair 515F (GTGYCAGCMGCCGCGGTAA) and
806R (GGACTACNVGGGTWTCTAAT) prior to 350 × 350 paired end
sequencing on the Illumina MiSeq platform. After trimming,
merging of forward and reverse reads and removal of chimeric
reads, taxonomic assignment of ASVs using SILVA 132, differential
abundance was calculated using DESeq2 using local regression to
estimate dispersion.

Flow cytometry and isolation of lamina propria granulocytes
Single cells suspensions from mesenteric lymph nodes and lamina
propria were prepared as described previously,29 and cell analysis
performed according to standard procedures as described in
Supplementary methods. All analyses were performed on an LSR
Fortessa analyzer (BD Pharmingen). For granulocyte isolation,
lamina propria cells were isolated as described previously29

and live, CD45+ Ly6G+ CD3-B220-NK1.1-cells sorted on a
FACSAria (BD).

Degranulation assay
To assess degranulation, granulocytes were treated with formy-
lated peptide (fMLP, 100 nM) for 10 min and lactoferrin levels in
the cell culture supernatant, as well as within the cells, were
measured using an ELISA kit (Hycult Biotech, Uden, Netherlands).
Percent degranulation was calculated as proportion of lactoferrin
in the supernatant divided by total lactoferrin levels.

Immunhistochemistry
Immunhistochemistry was performed according to standard
procedures and as described previously.66 Details are given in
Supplementary methods.

In vivo barrier permeability
Mice were starved for 6 h prior to gavage with FITC-dextran (4 kDa,
600mg/kg body weight). After 1 h, 120 µL blood was collected
from the sublingual vein into serum collection tubes. The blood
was centrifuged at 4 °C, 8000 g, for 3 min, serum diluted in an
equal volume of PBS (pH 7.4), and analyzed for FITC-dextran
concentration with a fluorescence spectrophotometer (SynergyII
plate-reader with Gen5 software; BioTek Instruments, Winooski,
VT) using an excitation wavelength of 485 nm and an emission
wavelength of 535 nm. Standard curves for calculating FITC-
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dextran concentration in the samples were obtained by diluting
FITC-dextran in serum from non-gavaged mice.

Statistical analysis
Unless otherwise stated, data are representative for one of at least
two independent experiments with n replicates each; unless
otherwise stated, data are represented as average and standard
error of the mean. Statistical significances were determined using
ANOVA followed by Wilcoxon–Mann–Whitney test for significance.
P values below 0.05 are considered significant. Microbiota read
counts were first grouped and summed at a given taxonomic
level. Principal component analysis was performed on centered
log-ratio transformed data after adding a pseudo count equal to
the mean number of read counts to each sample.

Study approval
All animal experiments have been conducted according to Swiss
animal welfare legislation. The local animal welfare commission
(Veterinary Office of the Canton of Zurich) has approved all
procedures involving mice (approval numbers ZH2014/255 and
ZH2017/20).
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