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Abstract
Major depressive disorder (MDD) is a serious mental illness, characterized by high morbidity, which has increased in recent
decades. However, the molecular mechanisms underlying MDD remain unclear. Previous studies have identified altered
metabolic profiles in peripheral tissues associated with MDD. Using curated metabolic characterization data from a large
sample of MDD patients, we meta-analyzed the results of metabolites in peripheral blood. Pathway and network analyses
were then performed to elucidate the biological themes within these altered metabolites. We identified 23 differentially
expressed metabolites between MDD patients and controls from 46 studies. MDD patients were characterized by higher
levels of asymmetric dimethylarginine, tyramine, 2-hydroxybutyric acid, phosphatidylcholine (32:1), and taurochenode-
soxycholic acid and lower levels of L-acetylcarnitine, creatinine, L-asparagine, L-glutamine, linoleic acid, pyruvic acid,
palmitoleic acid, L-serine, oleic acid, myo-inositol, dodecanoic acid, L-methionine, hypoxanthine, palmitic acid,
L-tryptophan, kynurenic acid, taurine, and 25-hydroxyvitamin D compared with controls. L-tryptophan and kynurenic
acid were consistently downregulated in MDD patients, regardless of antidepressant exposure. Depression rating scores were
negatively associated with decreased levels of L-tryptophan. Pathway and network analyses revealed altered amino acid
metabolism and lipid metabolism, especially for the tryptophan–kynurenine pathway and fatty acid metabolism, in the
peripheral system of MDD patients. Taken together, our integrated results revealed that metabolic changes in the peripheral
blood were associated with MDD, particularly decreased L-tryptophan and kynurenic acid levels, and alterations in the
tryptophan–kynurenine and fatty acid metabolism pathways. Our findings may facilitate biomarker development and the
elucidation of the molecular mechanisms that underly MDD.

Introduction

Major depressive disorder (MDD) is a mental disorder with
symptoms that include low mood for at least 2 weeks, loss
of interest, fatigue, and feelings of guilt [1]. MDD is a
serious mental illness, characterized by high morbidity and
a high suicide rate [2], and was the leading cause of dis-
ability in 2016 [3]. The lifetime prevalence of MDD has
been reported to be ~20%, with increasing morbidity during
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recent decades [4, 5]. However, the clinical diagnosis of
MDD remains underestimated because of high diagnostic
error rates in primary care [6]. As a complex and hetero-
geneous mental disease, no robust peripheral biomarkers
currently exist for MDD, and the molecular mechanisms
underlying this disease remain unclear, which has impeded
objective diagnoses and clinical therapy [7, 8].

Among the various omic techniques, metabolomics,
which can be used to characterize the metabolic profiles of
biological samples, is the best tool for determining phe-
notypes and can be utilized to identify disease-specific
biomarkers and mechanisms [9, 10]. Mass spectrometry
(MS)- and nuclear magnetic resonance (NMR)-based
techniques have been widely used during biomarker
development and to examine the molecular mechanisms
that underly neuropsychiatric diseases [11, 12]. A range of
studies has revealed perturbed metabolomes in the per-
ipheral tissues of MDD patients. For example, we pre-
viously reported the use of plasma metabolic profiles as
potential biomarkers among adult and adolescent patients
with MDD [13, 14]. Further, we found that the dysbiosis of
the gut microbiome may play a causal role in the induction
of depressive-like behaviors in rodents via effects on
metabolism [15]. Other studies have also reported that
metabolic changes in the periphery may represent potential
therapeutic targets for depression [16, 17]. These findings
imply that metabolites may play important roles during the
brain–body interactions involved in depression, and per-
ipheral metabolite levels have been associated with hip-
pocampal subfield volumes [18], hypothalamic pituitary
adrenal axis activity [19], and neurocognitive function [20].

Despite advances in metabolomics research examining
MDD, the majority of these nontargeted or targeted meta-
bolomic studies have had small sample sizes and have
reported inconsistent findings, limiting their clinical
applicability. To date, a range of meta-analyses has reported
decreased levels of tryptophan, kynurenic acid, and kynur-
enine and increased glutamate levels, in MDD patients
[21–23]. Despite these studies, which have examined the
levels of one or more metabolites, no meta-analyses have
been performed examining the metabolomic profiles of
MDD. A comprehensive bioinformatics analysis, based on
the differential metabolites identified at the metabolomics
level, may provide important insights into the pathological
molecular mechanisms underlying MDD.

Thus, the aim of the present study was to identify
metabolic changes in the peripheral blood of MDD patients.
We first generated a curated list of metabolites in the per-
ipheral blood of MDD patients, according to the results of
preexisting studies, and performed a meta-analysis to
identify differential metabolites, which may serve as robust
biomarkers for the clinical diagnosis of MDD. We then
performed comprehensive pathway and network analyses to

examine the biological themes associated with these meta-
bolic changes.

Materials and methods

Identification of relevant studies

A flowchart describing the process used to identify relevant
studies is shown in Supplementary Fig. 1. Detailed methods
describing the identification of relevant studies are provided
in Supplementary Materials. In brief, clinical studies that
compared metabolic changes between MDD and control
groups were identified in MENDA (http://menda.cqmu.edu.
cn:8080/index.php), our online database of existing meta-
bolic characterization studies associated with depression.
We updated our search up to January 2019, using our
previously reported search terms [24]. In this study, we
narrowed our selection according to the following steps. We
included studies that compared metabolite levels in serum
or plasma samples between MDD patients and controls and
detected these changes using MS-based or NMR-based
techniques.

Data curation

We extracted study information and metabolite data from
the selected studies. Recorded study information included
methodological and demographic information, including the
biological samples used, the recruiting area, sample size,
mean age, percent of females, antidepressant-free patients,
disease severity measure, and the analytical platform used.
Curated metabolite data included each metabolite examined,
with accompanying statistic data (mean, standard deviation,
and sample size). Other data, such as standard errors,
p values, or interquartile ranges, were transformed, as pre-
viously reported [25].

Identification of differential metabolites in MDD

Meta-analyses were performed using statistical software
(Stata v14.0; Stata Co., College Station, TX, USA), as
follows. Only metabolites reported in at least three different
datasets were selected for analysis [26]. Standardized effect
sizes across studies were combined, based on the statistics
reported for each metabolite (mean, standard deviation, and
sample size) by the original reports. The standardized mean
difference (SMD) and the 95% confidence interval (CI)
were estimated. A random-effects model was used to
determine the expected high degree of heterogeneity across
studies, as reported in previous molecular studies [27, 28].
Positive and negative SMD values indicated higher and
lower levels of metabolites in the MDD group, relative to
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the control group, respectively. Statistical significance was
set at p < 0.05.

Publication bias was assessed using the Egger’s test,
with a p value < 0.10 indicating the presence of publication
bias [29]. The Duval and Tweedie’s trim and fill method
was also used to reduce bias among the pooled estimates
[30]. To test the sources of potential heterogeneity, sub-
group analyses were performed, according to anti-
depressant use (yes or no) and the biological sample used
(plasma or serum). Sensitivity analyses were performed for
studies that recruited patients with a mean age of >18
years, by excluding studies that recruited pediatric
patients, and for studies using MS analytic platforms, by
excluding NMR studies. Meta-regression analyses were
performed to investigate the influence of each variable
(sample size, the proportion of females, mean age, and
disease severity) on the SMD. Details describing disease
severity assessment are provided in Supplementary Mate-
rials. Meta-regression analyses were only conducted for
metabolites that were reported in at least ten datasets, as
results using fewer datasets can lead to increased risk of
spurious findings [31].

Bioinformatics analysis

To reveal the biological functions of the differential meta-
bolites and their interactions, we performed pathway and
network analyses. Detailed methods are available in Sup-
plementary Materials. In brief, altered metabolic pathways
were identified, using metabolic pathway analysis in
MetaboAnalyst 4.0 [32], which performed an enrichment
analysis based on predefined KEGG pathways and differ-
ential metabolites [33]. Ingenuity pathways analysis (IPA,
http://www.ingenuity.com) was used for further analysis.
Canonical pathway analysis was performed to identify
altered pathways within the Ingenuity Pathway Knowledge
Base. For both metabolic pathway analysis and canonical
pathway analysis, a pathway with a p value < 0.05 was
considered to be significantly enriched. Network analysis
was also performed in IPA to construct molecular networks,
based on interactions among input metabolites and other
biological molecules.

Results

Characteristics of the included studies

Lists of included and excluded studies are provided in Sup-
plementary Data. A total of 49 comparisons (48 two-arm
comparisons and 1 three-arm comparison) were included.
The characteristics of the included studies are summarized in
Supplementary Table 1. Of these comparisons, 47 used the

MS platform, 33 measured metabolites in plasma, and 24
recruited antidepressant-free patients. All included studies
examined the associations between metabolites and MDD
using cross-sectional data. The sample sizes ranged from 16
to 2812 participants per study, with a median study size of
89 participants. The mean age of participants ranged from
14.0 to 72.2 years, with a median age of 37.1 years. The
median proportion of females was 58.1%.

Differential blood metabolites associated with MDD

A total of 83 metabolites, which were reported in at least
three different datasets, were used for the differential meta-
bolite identification (Table 1). A total of 23 metabolites were
found to be significantly differentially regulated between the
MDD and control groups (Supplementary Fig. 2). MDD
patients were characterized by higher levels of asymmetric
dimethylarginine, tyramine, 2-hydroxybutyric acid, phos-
phatidylcholine (32:1), and taurochenodesoxycholic acid
and lower levels of L-acetylcarnitine, creatinine, L-aspar-
agine, L-glutamine, linoleic acid, pyruvic acid, palmitoleic
acid, L-serine, oleic acid, myo-inositol, dodecanoic acid,
L-methionine, hypoxanthine, palmitic acid, L-tryptophan,
kynurenic acid, taurine, and 25-hydroxyvitamin D. Forest
plots for these differential metabolites are shown in Sup-
plementary Fig. 3. The heterogeneity among effect sizes was
significant for 15 differential metabolites (p for hetero-
geneity <0.05). The Egger test indicated potential publica-
tion bias for L-tryptophan (p= 0.004), L-serine (p= 0.034),
25-hydroxyvitamin D (p= 0.060), L-glutamine (p= 0.067),
L-asparagine (p= 0.079), and tyramine (p= 0.091). After
quantifying the potential effects of small-study bias, using
the trim and fill method, the imputations resulted in larger
summary SMDs (−0.70 for L-tryptophan; −1.80 for L-ser-
ine; −0.30 for 25-hydroxyvitamin D; −2.63 for L-glutamine;
−2.20 for L-asparagine; and 1.12 for tyramine).

Subgroup analysis based on antidepressant exposure
revealed that antidepressant-free MDD (AF-MDD) patients
had higher levels of L-proline and 3-hydroxybutyric acid
and lower levels of creatinine, L-tryptophan, kynurenic acid,
L-leucine, L-kynurenine, taurine, and L-histidine compared
with controls. Antidepressant-treated MDD (AT-MDD)
patients had decreased levels of glycine, hypoxanthine,
kynurenic acid, L-asparagine, L-glutamine, L-serine, and L-
tryptophan compared with controls (all p < 0.05; Supple-
mentary Table 2). Interestingly, six of the seven differential
metabolites identified in AT-MDD patients were shared
among all MDD patients, whereas five of the nine differ-
ential metabolites identified in AF-MDD patients were
unique to AF-MDD (Supplementary Fig. 4a). Furthermore,
L-tryptophan and kynurenic acid were consistently down-
regulated, regardless of antidepressant exposure. There
were no significant differences in the SMDs between
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biological samples (plasma versus serum; Supplementary
Fig. 4b, Supplementary Table 3).

Sensitivity analysis stratified by mean age found 16 dif-
ferential metabolites between adult MDD patients and con-
trols aged > 18 years (Supplementary Table 4), two of which,
phosphatidylcholine (32:1) and myo-inositol, were only sig-
nificantly dysregulated in adult patients (Supplementary
Fig. 4c). Sensitivity analysis stratified by analytic technique
identified 20 differential metabolites in studies that used MS
platforms, all of which were also identified using all analytic
techniques (Supplementary Fig. 4d, Supplementary Table 5).
In the meta-regression analysis, no significant associations
between factors (sample size, proportion of females, mean
age, and disease severity) and effect sizes (all meta-regression
p > 0.05; Supplementary Table 6) were identified, except for a
significant negative correlation between disease severity and
effect size for L-tryptophan [slope=−0.040, 95% CI
(−0.076, −0.005), p= 0.029; Supplementary Fig. 5], sug-
gesting that patients with higher depression rating scores may
have lower levels of L-tryptophan.

Bioinformatics analysis of blood metabolites in MDD

Bioinformatics analysis was performed separately for three
groups of differential metabolites (all MDD, AF-MDD, and
AT-MDD patients). For all patients, metabolic pathway
analysis using MetaboAnalyst identified 10 altered meta-
bolic pathways; the top-ranked metabolic pathways were
“nitrogen metabolism,” “aminoacyl-tRNA biosynthesis,”
and “fatty acid biosynthesis.” Canonical pathway analysis
in IPA identified 20 significantly disturbed canonical path-
ways; the top-ranked pathways were “tRNA charging,”
“glycine betaine degradation,” and “L-serine degradation”
(Table 2). To better understand the interactions between
pathways, we summarized these pathways in a brief plot
(Fig. 1). Network analysis in IPA revealed a significantly
altered network for “developmental disorder, hereditary
disorder, metabolic disease” (score 42), which was asso-
ciated with 15 differential metabolites (Fig. 2a), and for
“small molecule biochemistry, increased levels of creati-
nine, cell signaling” (score 13), which was associated with
six differential metabolites (Fig. 2b).

We then investigated the altered pathways and networks
associated with antidepressant exposure. Respectively, five
and nine metabolic pathways were significantly altered in
AF-MDD and AT-MDD patients (Supplementary Table 7).
“Aminoacyl-tRNA biosynthesis,” “nitrogen metabolism,”
and “tryptophan metabolism” were shared pathways among
both groups of patients. The canonical pathway analysis
identified 4 and 45 significantly disturbed pathways for AF-
MDD and AT-MDD patients, respectively (Supplementary
Table 8), “tRNA charging” was a shared pathway. Network
analysis revealed that “organismal injury and abnormalities,

increased levels of creatinine, small molecule biochemistry”
(score 27, nine differential metabolites) was a significantly
altered network for AF-MDD (Supplementary Fig. 6a), and
that “amino acid metabolism, cell-to-cell signaling and
interaction, molecular transport” (score 21, seven differ-
ential metabolites) was significantly altered for AT-MDD
(Supplementary Fig. 6b).

Discussion

In the present study, we integrated the peripheral blood
metabolic profiles from a large sample of MDD patients and

Table 2 Altered pathways in the blood of patients with major
depressive disorder.

Pathways p valuea

Metabolic pathways identified by MetaboAnalyst

Nitrogen metabolism <0.001

Aminoacyl-tRNA biosynthesis <0.001

Fatty acid biosynthesis 0.001

Alanine, aspartate and glutamate metabolism 0.001

Linoleic acid metabolism 0.008

Glycine, serine and threonine metabolism 0.009

Cyanoamino acid metabolism 0.009

Cysteine and methionine metabolism 0.013

Taurine and hypotaurine metabolism 0.014

Arginine and proline metabolism 0.031

Canonical pathways identified by IPA

tRNA charging <0.001

Glycine betaine degradation <0.001

L-Serine degradation <0.001

Asparagine biosynthesis I 0.003

Palmitate biosynthesis I (animals) 0.006

Superpathway of methionine degradation 0.007

Cysteine biosynthesis III (mammalia) 0.010

NAD biosynthesis II (from tryptophan) 0.021

Folate transformations I 0.021

HIF1α signaling 0.024

Asparagine degradation I 0.035

Glutamine degradation I 0.035

Pyruvate fermentation to lactate 0.047

Glycine biosynthesis III 0.047

Alanine degradation III 0.047

Alanine biosynthesis II 0.047

Myo-inositol biosynthesis 0.047

L-Cysteine degradation II 0.047

Phosphatidylethanolamine biosynthesis III 0.047

Glycine biosynthesis I 0.047

ap values were calculated from hypergeometric tests in MetaboAna-
lyst, and from Fisher’s exact tests in Ingenuity pathways analysis
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controls and found that the levels of five metabolites were
significantly elevated in the peripheral blood of MDD
patients compared with controls, whereas the levels of 18
metabolites were reduced in MDD patients compared with
controls. L-tryptophan and kynurenic acid were consistently
downregulated in MDD patients, regardless of anti-
depressant exposure. Moreover, we explored the biological
themes associated with these metabolic changes, based on
pathway and network analyses, which suggested that sev-
eral pathways involved in amino acid metabolism and lipid
metabolism, especially the tryptophan–kynurenine pathway
and fatty acid metabolism, were significantly perturbed in
the peripheral blood of MDD patients.

Increasing investigations have sought to identify poten-
tial blood-based biomarkers of psychiatric diseases [34, 35],
and our findings may facilitate further biomarker develop-
ment for MDD. Among the altered metabolites, only tryp-
tophan, kynurenic acid, and 25-hydroxyvitamin D were
identified in studies that examined relatively large samples

(>1000 participants), which may provide more credible
estimates than smaller samples. Furthermore, we observed
heterogeneity for the metabolic changes among the included
studies, which could partially be explained by anti-
depressant exposure. Thus, antidepressant exposure should
be considered in future metabolic biomarker studies. Sub-
group analyses of antidepressant exposure found that only
tryptophan and kynurenic acid were consistently down-
regulated in MDD patients, regardless of antidepressant
exposure, and meta-regression analysis revealed that
patients with higher depression scores might have lower
levels of tryptophan, which is consistent with previous
meta-analyses [21, 23]. These findings suggest that certain
metabolic markers may be used to distinguish the MDD
disease state and to monitor the therapeutic response
[36, 37], with the most convincing evidence existing for L-
tryptophan, followed by kynurenic acid.

Despite these findings, whether any of these metabolites
can be used as biomarkers for MDD remains unresolved.

Pyruvic acid

Acetyl-CoA

Oxalacetc acid Citric acid Oxoglutaric acid

SuccinateFumarate

TCA cycle

L-Glutamic acid

L-Glutamine

GABA

Glutamate metabolism

L-Aspartic acid

L-Asparagine

Aspartate metabolism

Glycine, serine and

L-Serine

L-Methionine

Glycine

2-Hydroxybutyric acid

Hypoxanthine

Phosphoenolpyruvate

ChorismateTyramine

Cholesterol

Taurochenodesoxycholic acid

Faty acid metabolism

L-Acetylcarnitne

Arginine and proline metabolism

L-Arginine

Creatinine

Citruline

Asymmetric
dimethylarginine

L-Tryptophan

L-Kynurenine

Kynurenic acid3-Hydroxykynurenine

Quinolinic acid

Tryptophan–kynurenine pathway

threonine metabolism

Bile acid metabolism

Tyrosine metabolism
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25-Hydroxyvitamin D
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L-Leucine

L-Proline

L-Histidine

Up-regulated
Down-regulated
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All
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Myo-inositolPC(32:1)

Taurine
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Fig. 1 A simplified schematic
diagram of the altered
metabolic pathways in the
blood of patients with MDD.
For differential metabolites,
boxes in red represent increased
levels, boxes in green represent
decreased levels, and boxes in
white represent no significant
change when compared with
controls. Upper and lower boxes
represent antidepressant-free
major depressive disorder (AF-
MDD) and all patients,
respectively. Acetyl-CoA acetyl
coenzyme A; GABA gamma-
aminobutyric acid; MDD major
depressive disorder; PC
phosphatidylcholine; TCA
tricarboxylic acid cycle.
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Biomarkers in peripheral blood might not, in theory, reflect
metabolic changes in the brain, which requires further direct
evidence. Moreover, the utility of any individual metabolite
biomarker for MDD practically remains unclear. For
example, we reported that the area under the curve for
tryptophan associated with MDD was 0.74, which remains
inadequate for clinical practice, suggesting that diagnostic
systems that include panels of differential metabolites are
likely to result in better diagnostic efficacy than individual
metabolites [38]. Therefore, more metabolic profiling stu-
dies are necessary to develop promising diagnostic systems.
Given the heterogeneity of depression, such as concomitant
somatic diseases, clinical variances should be addressed to
improve the diagnostic performance. Because metabolomics
studies face challenges from methodological sources of
variance, the application of more rigorous experimental
designs and processes will be necessary for future progress,
as described in methodological reviews [39, 40].

Our integrated results also provided clues to the potential
biological mechanisms that underly MDD. We found sig-
nificantly disturbed amino acid metabolism in the peripheral
blood of MDD patients. The levels of five amino acids
(serine, methionine, asparagine, glutamine, and tryptophan)
were decreased in the blood samples from all patients, and
the levels of four amino acids (histidine, leucine, taurine,
and tryptophan) were decreased in AF-MDD patients
compared with controls. Pathway analyses revealed nitro-
gen metabolism and tRNA charging to be among the top-

ranked pathways, reflecting perturbations in amino acid
metabolism [41, 42]. Moreover, we found that the
tryptophan–kynurenine pathway was the most enriched
amino acid metabolism pathway. This pathway produces
both neuroprotective (kynurenic acid) and neurotoxic (3-
hydroxykynurenine and quinolinic acid) metabolites [43],
and decreased levels of kynurenic acid have been reported
to indicate increased neurotoxic burdens during in the
course of depression, which could be reversed by physical
exercise and electroconvulsive therapy [16, 44]. Further-
more, pro-inflammatory cytokines (e.g., interferon) have
been demonstrated to mediate the enzymatic activity of the
kynurenine pathway [45], resulting in decreased neuropro-
tective effects for kynurenic acid. This result is consistent
with the findings that interferon-induced depression in
~50% of patients receiving interferon treatment [46] and
that interferon treatment resulted in decreased levels of
tryptophan and increased levels of kynurenine and quino-
linic acid in the rodent brain [47, 48]. Finally, anti-
inflammatory treatments have been reported to decrease
depressive symptoms in patients [49]. Overall, these data
suggest that the tryptophan–kynurenine pathway may
be involved in depression by mediating inflammatory
responses.

Other amino acid metabolism pathways, as summarized
in Fig. 1, were also found to be enriched. One interpretation
of these findings is that these pathways are involved in
neurotransmission. Glutamine is a precursor of glutamate

a b

OtherMetabolite

Group/Complex

Direct interaction Indirect interaction

Cytokine/Growth factor Enzyme G-protein coupled receptor Kinase

TransporterPeptidase

Fig. 2 Altered networks associated with the differential metabo-
lites in the blood of patients with MDD. a This network is associated
with “developmental disorder, hereditary disorder, and metabolic
disease” (score 42, 15 differential metabolites). b This network is
associated with “small molecule biochemistry, increased levels of

creatinine, and cell signaling” (score 13, six differential metabolites).
Differential metabolites highlighted in red represent increased levels,
whereas metabolites highlighted in green represent decreased levels
when compared with controls.
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and gamma-aminobutyric acid [50], and altered levels of
circulating glutamine may affect the gamma-aminobutyric
acid levels in the brain [51]. Proline is synthesized from
glutamic acid, and chronic hyperprolinemia can lead to
reduced glutamate uptake, increased adenosine triphosphate
catabolism, and increased pro-inflammatory cytokine levels
[52–54]. Moreover, monoamine neurotransmitters may be
involved in MDD, as tryptophan is the precursor for ser-
otonin and tyrosine is the precursor for catecholamines. In
addition to neurotransmission, these disturbed pathways
have also been associated with energy metabolism. In
addition to the downregulated amino acids, being gluco-
genic or ketogenic, other downregulated metabolites,
including creatinine, hypoxanthine, and pyruvic acid, were
associated with periphery energy dyshomeostasis [55, 56].
Thus, these results suggested that disturbed amino acid
metabolism may contribute to depression by modulating
neurotransmission and energy metabolism.

Our integrated results also suggested that lipid metabo-
lism was dysregulated during MDD. Fatty acid biosynth-
esis was among the top-ranked metabolic pathways, and
the levels of five fatty acids and L-acetylcarnitine were
significantly decreased in the blood of MDD patients
compared with controls. Fatty acid alterations may con-
tribute to depression through several mechanisms, such as
affecting cell membrane structure, biological stress, and
inflammatory responses [57]. L-Acetylcarnitine plays a
pivotal role in the transport of fatty acids into the mito-
chondria for beta-oxidation, and L-acetylcarnitine supple-
mentation was reported to have antidepressive effects [58].
We also found increased levels of taurochenodesoxycholic
acid, a bile acid formed from taurine in the liver, in the
blood of MDD patients. Animal studies of depression have
reported increased taurochenodesoxycholic acid levels and
decreased taurine levels in the liver [59, 60], indicating
that primary bile acid biosynthesis may be associated
with MDD. Furthermore, we observed decreased levels
of 25-hydroxyvitamin D in the present study, which
was consistent with a previous meta-analysis [61].
25-Hydroxyvitamin D is the primary form of vitamin D in
the human body, and a deficiency in vitamin D has been
associated with higher rates of suicide and the elevation of
pro-inflammatory cytokines [62, 63]. Taken together, these
findings suggested that alterations in lipid metabolism may
play a key role in the pathogenesis of MDD.

Our network analysis also revealed that the mitogen-
activated protein kinase (MAPK) signaling pathway, which
includes Mapk, extracellular signal-regulated kinase 1/2, c-
Jun N-terminal kinase (Jnk), P38 MAPK, and protein kinase
C [64], and the phosphoinositide 3-kinase/protein kinase B
(PI3K/AKT) signaling pathway, which includes PI3K, Akt,
glycogen synthase kinase 3, and insulin [65], were both
linked to the identified altered networks, indicating cross-

talk between signaling pathways and differentially expres-
sed metabolites. We also reported decreased peripheral
levels of myo-inositol, which forms the structural basis for
secondary messengers in the phosphoinositol system [66].
Overall, our data supported the potential involvement of
signaling pathways in the peripheral metabolic changes
observed in MDD patients.

This study has several limitations. First, without meta-
bolic and clinical data from individual patients, the adjust-
ment of potential confounders was not possible during our
analysis. The integration of individual patient data is
required in future studies. Second, the sample size was
relatively small for certain metabolites in our analysis,
resulting in low statistical power for those metabolites.
Further studies with more patients are required to validate
our findings. Third, we only included studies that reported
MS-based or NMR-based techniques. This decision was
made a priori because these techniques have higher
accuracies and wider detection ranges than other techni-
ques, which has revolutionized metabolite measurement
[67]. Although this strategy is also used in other meta-
analyses [26, 68], however, this limitation may also lead to
selection bias. For example, previous studies utilizing high-
performance liquid chromatography with fluorescence
detection reported decreased or unchanged tryptophan
levels in MDD patients compared with controls [69, 70].
Fourth, confidence in metabolite annotation and quantifi-
cation remains a primary challenge for metabolomics stu-
dies [71, 72]; therefore, plausible metabolite candidates
from the included studies may limit the generalization of
our findings. Finally, during the process of metabolite
identification and standardization across studies, a small
number of metabolites were lost due to the use of non-
standardized metabolite nomenclature.

Summary

We identified differential metabolites in the peripheral blood
of MDD patients, using a meta-analysis of curated metabolic
characterization data from a large sample of patients. Sub-
group analyses showed that antidepressant exposure was the
most important source of heterogeneity. Pathway and net-
work analyses revealed disturbances of amino acid and lipid
metabolism, especially the tryptophan–kynurenine pathway
and fatty acid metabolism, in the peripheral systems of
MDD patients. This integrated approach may facilitate the
development of biomarkers for MDD and help to determine
the underlying molecular mechanisms associated with
MDD. Future replication studies using larger sample sizes
are necessary to confirm our findings.
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