Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of TCF4 regulatory networks leads to abnormal cortical development and mental disabilities

Abstract

The TCF4 gene is the subject of numerous and varied investigations of it’s role in the genesis of neuropsychiatric disease. The gene has been identified as the cause of Pitt–Hopkins syndrome (PTHS) and it has been implicated in various other neuropsychiatric diseases, including schizophrenia, depression, and autism. However, the precise molecular mechanisms of the gene’s involvement in neurogenesis, particularly, corticogenesis, are not well understood. Here, we present data showing that TCF4 is expressed in a region-specific manner in the radial glia and stem cells of transient embryonic zones at early gestational ages in both humans and mice. TCF4 haploinsufficiency mice exhibit a delay in neuronal migration, and a significant increase in the number of upper-layer cortical neurons, as well as abnormal dendrite and synapse formation. Our research also reveals that TCF3 up-regulates Tcf4 by binding to the specific “E-box” and its flank sequence in intron 2 of the Tcf4 gene. Additionally, our transcriptome study substantiates that Tcf4 transcriptional function is essential for locomotion, cognition, and learning. By activating expression of TCF4 in the regulation of neuronal proliferation and migration to the overlaying neocortex and subsequent differentiation leading to laminar formation TCF4 fulfills its normal function, but if not, abnormalities such as those reported here result. These findings provide new insight into the specific roles of Tcf4 molecular pathway in neocortical development and their relevance in the pathogenesis of neuropsychiatric diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008;9:110–22.

    Article  CAS  PubMed  Google Scholar 

  2. Rakic P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science. 1974;183:425–7.

    Article  CAS  PubMed  Google Scholar 

  3. Rakic P. Specification of cerebral cortical areas. Science. 1988;241:170–6.

    Article  CAS  PubMed  Google Scholar 

  4. Geschwind DH, Rakic P. Cortical evolution: judge the brain by its cover. Neuron. 2013;80:633–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O’Leary DDM, Chou S-J, Sahara S. Area patterning of the mammalian cortex. Neuron. 2007;56:252–69.

    Article  CAS  PubMed  Google Scholar 

  6. Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science. 1986;232:232–5.

    Article  CAS  PubMed  Google Scholar 

  7. Rakic P, Ayoub AE, Breunig JJ, Dominguez MH. Decision by division: making cortical maps. Trends Neurosci. 2009;32:291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frank CL, Tsai L-H. Alternative functions of core cell cycle regulators in neuronal migration, neuronal maturation, and synaptic plasticity. Neuron. 2009;62:312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science. 1996;274:1133–8.

    Article  CAS  PubMed  Google Scholar 

  10. Deutsch SI, Burket JA, Katz E. Does subtle disturbance of neuronal migration contribute to schizophrenia and other neurodevelopmental disorders? Potential genetic mechanisms with possible treatment implications. Eur Neuropsychopharmacol. 2010;20:281–7.

    Article  CAS  PubMed  Google Scholar 

  11. Fang W-Q, Chen W-W, Jiang L, Liu K, Yung W-H, Fu AKY, et al. Overproduction of upper-layer neurons in the neocortex leads to autism-like features in mice. Cell Rep. 2014;9:1635–43.

    Article  CAS  PubMed  Google Scholar 

  12. Fan Y, Abrahamsen G, Mills R, Calderón CC, Tee JY, Leyton L, et al. Focal adhesion dynamics are altered in schizophrenia. Biol Psychiatry. 2013;74:418–26.

    Article  PubMed  Google Scholar 

  13. Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med. 2014;370:1209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Pontual L, Mathieu Y, Golzio C, Rio M, Malan V, Boddaert N, et al. Mutational, functional, and expression studies of the TCF4 gene in Pitt–Hopkins syndrome. Hum Mutat. 2009;30:669–76.

    Article  CAS  PubMed  Google Scholar 

  15. Forrest M, Chapman RM, Doyle AM, Tinsley CL, Waite A, Blake DJ. Functional analysis of TCF4 missense mutations that cause Pitt–Hopkins syndrome. Hum Mutat. 2012;33:1676–86.

    Article  CAS  PubMed  Google Scholar 

  16. Brockschmidt A, Todt U, Ryu S, Hoischen A, Landwehr C, Birnbaum S, et al. Severe mental retardation with breathing abnormalities (Pitt–Hopkins syndrome) is caused by haploinsufficiency of the neuronal bHLH transcription factor TCF4. Hum Mol Genet. 2007;16:1488–94.

    Article  CAS  PubMed  Google Scholar 

  17. Sweatt JD. Pitt–Hopkins syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp Mol Med. 2013;45:e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sepp M, Pruunsild P, Timmusk T. Pitt-Hopkins syndrome-associated mutations in TCF4 lead to variable impairment of the transcription factor function ranging from hypomorphic to dominant-negative effects. Hum Mol Genet. 2012;21:2873–88.

    Article  CAS  PubMed  Google Scholar 

  19. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. Common variants conferring risk of schizophrenia. Nature. 2009;460:744–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Steinberg S, de Jong S, Andreassen OA, Werge T, Børglum AD, Mors O, et al. Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet. 2011;20:4076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamdan FF, Srour M, Capo-Chichi J-M, Daoud H, Nassif C, Patry L, et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 2014;10:e1004772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forrest MP, Hill MJ, Quantock AJ, Martin-Rendon E, Blake DJ. The emerging roles of TCF4 in disease and development. Trends Mol Med. 2014;20:322–31.

    Article  CAS  PubMed  Google Scholar 

  23. Del-Favero J, Gestel SVan, Børglum AD, Muir W, Ewald H, Mors O, et al. European combined analysis of the CTG18.1 and the ERDA1 CAG/CTG repeats in bipolar disorder. Eur J Hum Genet. 2002;10:276–80.

    Article  CAS  PubMed  Google Scholar 

  24. Quednow BB, Ettinger U, Mössner R, Rujescu D, Giegling I, Collier DA, et al. The schizophrenia risk allele C of the TCF4rs9960767 polymorphism disrupts sensorimotor gating in schizophrenia spectrum and healthy volunteers. J Neurosci. 2011;31:6684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wirgenes KV, Sønderby IE, Haukvik UK, Mattingsdal M, Tesli M, Athanasiu L, et al. TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders. Transl Psychiatry. 2012;2:e112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Page SC, Hamersky GR, Gallo RA, Rannals MD, Calcaterra NE, Campbell MN, et al. The schizophrenia- and autism-associated gene, transcription factor 4 regulates the columnar distribution of layer 2/3 prefrontal pyramidal neurons in an activity-dependent manner. Mol Psychiatry 2017. https://doi.org/10.1038/mp.2017.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jakob H, Beckmann H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm. 1986;65:303–26.

    Article  CAS  PubMed  Google Scholar 

  28. Ayoub AE, Rakic P. Neuronal misplacement in schizophrenia. Biol Psychiatry. 2015;77:925–6.

    Article  PubMed  Google Scholar 

  29. Carrel D, Hernandez K, Kwon M, Mau C, Trivedi MP, Brzustowicz LM, et al. Nitric oxide synthase 1 adaptor protein, a protein implicated in schizophrenia, controls radial migration of cortical neurons. Biol Psychiatry. 2015;77:969–78.

    Article  CAS  PubMed  Google Scholar 

  30. Brosda J, Dietz F, Koch M. Impairment of cognitive performance after reelin knockdown in the medial prefrontal cortex of pubertal or adult rats. Neurobiol Dis. 2011;44:239–47.

    Article  PubMed  Google Scholar 

  31. Ishii K, Kubo K, Nakajima K. Reelin and neuropsychiatric disorders. Front Cell Neurosci. 2016;10:229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.

    Article  CAS  PubMed  Google Scholar 

  33. Cubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S, et al. Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron. 2010;66:523–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li H, Fertuzinhos S, Mohns E, Hnasko TS, Verhage M, Edwards R, et al. Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron. 2013;79:970–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Fariñas I, Grosschedl R, et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron. 2008;57:364–77.

    Article  CAS  PubMed  Google Scholar 

  36. Leone DP, Heavner WE, Ferenczi EA, Dobreva G, Huguenard JR, Grosschedl R, et al. Satb2 Regulates the differentiation of both callosal and subcerebral projection neurons in the developing cerebral cortex. Cereb Cortex. 2015;25:3406–19.

    Article  PubMed  Google Scholar 

  37. Dominguez MH, Ayoub AE, Rakic P. POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb Cortex. 2013;23:2632–43.

    Article  PubMed  Google Scholar 

  38. Flora A, Garcia JJ, Thaller C, Zoghbi HY. The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors. Proc Natl Acad Sci USA. 2007;104:15382–7.

    Article  CAS  PubMed  Google Scholar 

  39. D’Rozario M, Zhang T, Waddell EA, Zhang Y, Sahin C, Sharoni M, et al. Type I bHLH proteins daughterless and Tcf4 restrict neurite branching and synapse formation by repressing neurexin in postmitotic neurons. Cell Rep. 2016;15:386–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Ercument Cicek A, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kozol RA, Cukier HN, Zou B, Mayo V, De Rubeis S, Cai G, et al. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Hum Mol Genet. 2015;24:4006–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gauthier J, Champagne N, Lafrenière RG, Xiong L, Spiegelman D, Brustein E, et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci USA. 2010;107:7863–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mariamma Pappy for technical help and Brian Rash for helpful discussions and Ruth Rappaport, Ph.D. for editing the manuscript. We are grateful to the Kavli Institute for Neuroscience at Yale and the National Institutes of Health for NIH funding: DA02399; EY002593; NS014841 (PR) and National Natural Science Foundation of China: #81471159 (HL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasko Rakic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhu, Y., Morozov, Y.M. et al. Disruption of TCF4 regulatory networks leads to abnormal cortical development and mental disabilities. Mol Psychiatry 24, 1235–1246 (2019). https://doi.org/10.1038/s41380-019-0353-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0353-0

This article is cited by

Search

Quick links