Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neurochemical evidence for differential effects of acute and repeated oxytocin administration

Abstract

A discrepancy in oxytocin’s behavioral effects between acute and repeated administrations indicates distinct underlying neurobiological mechanisms. The current study employed a combination of human clinical trial and animal study to compare neurochemical changes induced by acute and repeated oxytocin administrations. Human study analyzed medial prefrontal metabolite levels by using 1H-magnetic resonance spectroscopy, a secondary outcome in our randomized, double-blind, placebo-controlled crossover trial of 6 weeks intranasal administrations of oxytocin (48 IU/day) and placebo within-subject design in 17 psychotropic-free high-functioning men with autism spectrum disorder. Medial prefrontal transcript expression levels were analyzed in adult male C57BL/6J mice after intraperitoneal injection of oxytocin or saline either once (200 ng/100 μL/mouse, n = 12) or for 14 consecutive days (200 ng/100 μL/mouse/day, n = 16). As the results, repeated administration of oxytocin significantly decreased the medial prefrontal N-acetylaspartate (NAA; p = 0.043) and glutamate–glutamine levels (Glx; p = 0.001), unlike the acute oxytocin. The decreases were inversely and specifically associated (r = 0.680, p = 0.004 for NAA; r = 0.491, p = 0.053 for Glx) with oxytocin-induced improvements of medial prefrontal functional MRI activity during a social judgment task not with changes during placebo administrations. In wild-type mice, we found that repeated oxytocin administration reduced medial frontal transcript expression of N-methyl-d-aspartate receptor type 2B (p = 0.018), unlike the acute oxytocin, which instead changed the transcript expression associated with oxytocin (p = 0.0004) and neural activity (p = 0.0002). The present findings suggest that the unique sensitivity of the glutamatergic system to repeated oxytocin administration may explain the differential behavioral effects of oxytocin between acute and repeated administration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yamasue H, Yee JR, Hurlemann R, Rilling JK, Chen FS, Meyer-Lindenberg A, et al. Integrative approaches utilizing oxytocin to enhance prosocial behavior: from animal and human social behavior to autistic social dysfunction. J Neurosci. 2012;32:14109–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Young LJ, Barrett CE. Neuroscience. Can oxytocin treat autism? Science. 2015;347:825–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Harris JC, Carter CS. Therapeutic interventions with oxytocin: current status and concerns. J Am Acad Child Adolesc Psychiatry. 2013;52:998–1000.

    PubMed  Google Scholar 

  4. Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci USA. 2010;107:4389–94.

    CAS  PubMed  Google Scholar 

  5. Watanabe T, Abe O, Kuwabara H, Yahata N, Takano Y, Iwashiro N, et al. Mitigation of sociocommunicational deficits of autism through oxytocin-induced recovery of medial prefrontal activity: a randomized trial. JAMA Psychiatry. 2014;71:166–75.

    PubMed  Google Scholar 

  6. Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ, et al. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry. 2010;67:692–4.

    CAS  PubMed  Google Scholar 

  7. Domes G, Heinrichs M, Kumbier E, Grossmann A, Hauenstein K, Herpertz SC. Effects of intranasal oxytocin on the neural basis of face processing in autism spectrum disorder. Biol Psychiatry. 2013;74:164–71.

    CAS  PubMed  Google Scholar 

  8. Gordon I, Vander Wyk BC, Bennett RH, Cordeaux C, Lucas MV, et al. Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci USA. 2013;110:20953–8.

    CAS  PubMed  Google Scholar 

  9. Aoki Y, Yahata N, Watanabe T, Takano Y, Kawakubo Y, Kuwabara H, et al. Oxytocin improves behavioural and neural deficits in inferring others’ social emotions in autism. Brain. 2014;137:3073–86.

    PubMed  Google Scholar 

  10. Takayanagi Y, Yoshida M, Takashima A, Takanami K, Yoshida S, Nishimori K, et al. Activation of supraoptic oxytocin neurons by secretin facilitates social recognition. Biol Psychiatry. 2015;81:243–51.

    PubMed  Google Scholar 

  11. Scheele D, Kendrick KM, Khouri C, Kretzer E, Schläpfer TE, Stoffel-Wagner B, et al. An oxytocin-induced facilitation of neural and emotional responses to social touch correlates inversely with autism traits. Neuropsychopharmacol. 2014;39:2078–85.

    CAS  Google Scholar 

  12. Benner S, Yamasue H. Clinical potential of oxytocin in autism spectrum disorder: current issues and future perspectives. Behav Pharmacol. 2018;29:1–12.

    CAS  PubMed  Google Scholar 

  13. Yamasue H. Promising evidence and remaining issues regarding the clinical application of oxytocin in autism spectrum disorders. Psychiatr Clin Neurosci. 2016;70:89–99.

    Google Scholar 

  14. Yamasue H, Domes G. Oxytocin and autism spectrum disorders. Curr Top Behav Neurosci. 2017;35:449–65.

    Google Scholar 

  15. Bales KL, Solomon M, Jacob S, Crawley JN, Silverman JL, Larke RH, et al. Long-term exposure to intranasal oxytocin in a mouse autism model. Transl Psychiatry. 2014;4:e480.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bales KL, Perkeybile AM, Conley OG, Lee MH, Guoynes CD, Downing GM, et al. Chronic intranasal oxytocin causes long-term impairments in partner preference formation in male prairie voles. Biol Psychiatry. 2013;74:180–8.

    CAS  PubMed  Google Scholar 

  17. Aoki Y, Watanabe T, Abe O, Kuwabara H, Yahata N, Takano Y, et al. Oxytocin’s neurochemical effects in the medial prefrontal cortex underlie recovery of task-specific brain activity in autism: a randomized controlled trial. Mol Psychiatry. 2011;20:447–53.

    Google Scholar 

  18. Watanabe T, Kuroda M, Kuwabara H, Aoki Y, Iwashiro N, Tatsunobu N, et al. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain. 2015;138:3400–12.

    PubMed  Google Scholar 

  19. Harada M, Taki MM, Nose A, Kubo H, Mori K, Nishitani H. et al. Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J Autism Dev Disord. 2011;41:447–54.

    PubMed  Google Scholar 

  20. Purcell A, Jeon O, Zimmerman A, Blue M, Pevsner J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology. 2001;57:1618–28.

    CAS  PubMed  Google Scholar 

  21. Wechsler D. WAIS-R: manual: Wechsler adult intelligence scale—revised. Revised edition. San Antonio: Harcourt Brace Jovanovich [for] Psychological Corporation; 1981.

    Google Scholar 

  22. Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.

    CAS  PubMed  Google Scholar 

  23. Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, et al. Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord. 1989;19:185–212.

    CAS  PubMed  Google Scholar 

  24. Feifel D, Macdonald K, Nguyen A, Cobb P, Warlan H, Galangue B, et al. Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients. Biol Psychiatry. 2010;68:678–80.

    CAS  PubMed  Google Scholar 

  25. McCracken JT, McGough J, Shah B, Cronin P, Hong D, Aman MG, et al. Risperidone in children with autism and serious behavioral problems. N Engl J Med. 2002;347:314–21.

    CAS  PubMed  Google Scholar 

  26. Tachibana M, Kagitani-Shimono K, Mohri I, Yamamoto T, Sanefuji W, Nakamura A, et al. Long-term administration of intranasal oxytocin is a safe and promising therapy for early adolescent boys with autism spectrum disorders. J Child Adolesc Psychopharmacol. 2013;23:123–7.

    CAS  PubMed  Google Scholar 

  27. Anagnostou E, Soorya L, Chaplin W, Bartz J, Halpern D, Wasserman S, et al. Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: a randomized controlled trial. Mol Autism. 2012;3:16.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Aoki Y, Abe O, Yahata N, Kuwabara H, Natsubori T, Iwashiro N, et al. Absence of age-related prefrontal NAA change in adults with autism spectrum disorders. Transl Psychiatry. 2012a;2:e178.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Teng BL, Nonneman RJ, Agster KL, Nikolova VD, Davis TT, Riddick NV, et al. Prosocial effects of oxytocin in two mouse models of autism spectrum disorders. Neuropharmacology. 2013;72:187–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Abbott C, Bustillo J. What have we learned from proton magnetic resonance spectroscopy about schizophrenia? A critical update. Curr Opin Psychiatry. 2006;19:135–9.

    PubMed  Google Scholar 

  31. Goff DC, Coyle JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry. 2001;158:1367–77.

    CAS  PubMed  Google Scholar 

  32. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM. N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81:89–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rubin Y, LaPlaca MC, Smith DH, Thibault LE, Lenkinski RE. The effect of N-acetylaspartate on the intracellular free calcium concentration in NTera2-neurons. Neurosci Lett. 1995;198:209–12.

    CAS  PubMed  Google Scholar 

  34. Thatcher NM, Badar-Goffer RS, Ben-Yoseph O, McLean MA, Morris PG, Prior MJ, et al. A comparison of some metabolic effects of N-methylaspartate stereoisomers, glutamate and depolarization: a multinuclear MRS study. Neurochem Res. 2002;27:51–58.

    CAS  PubMed  Google Scholar 

  35. Tranberg M, Stridh MH, Guy Y, Jilderos B, Wigstrom H, Weber SG, et al. NMDA-receptor mediated efflux of N-acetylaspartate: physiological and/or pathological importance? Neurochem Int. 2004;45:1195–204.

    CAS  PubMed  Google Scholar 

  36. Yamakura T, Shimoji K. Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog Neurobiol. 1999;59:279–98.

    CAS  PubMed  Google Scholar 

  37. Akashi K, Kakizaki T, Kamiya H, Fukaya M, Yamasaki M, Abe M, et al. NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses. J Neurosci. 2009;29:10869–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, et al. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature. 1992;357:70–74.

    CAS  PubMed  Google Scholar 

  39. Mairesse J, Gatta E, Reynaert ML, Marrocco J, Morley-Fletcher S, Soichot M, et al. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats. Psychoneuroendocrinol. 2015;62:36–46.

    CAS  Google Scholar 

  40. Mesic I, Guzman YF, Guedea AL, Jovasevic V, Corcoran KA, Leaderbrand K, et al. Double dissociation of the roles of metabotropic glutamate receptor 5 and oxytocin receptor in discrete social behaviors. Neuropsychopharmacol. 2015;40:2337–46.

    CAS  Google Scholar 

  41. Monaco SA, Gulchina Y, Gao WJ. NR2B subunit in the prefrontal cortex: a double-edged sword for working memory function and psychiatric disorders. Neurosci Biobehav Rev. 2015;56:127–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron. 2015;87:684–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Guastella AJ, Gray KM, Rinehart NJ, Alvares GA, Tonge BJ, Hickie IB, et al. The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: a randomized controlled trial. J Child Psychol Psychiatry. 2015;56:444–52.

    PubMed  Google Scholar 

  44. Bejjani A, O’Neill J, Kim JA, Frew AJ, Yee VW, Ly R, et al. Elevated glutamatergic compounds in pregenual anterior cingulate in pediatric autism spectrum disorder demonstrated by 1H MRS and 1H MRSI. PLoS ONE. 2012;7:e38786.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. T. Kadowaki, T. Iwatsubo, and Y. Arakawa in the Project to Create Early-Stage and Exploratory Clinical Trial Centres for providing MRI scanning opportunities. A part of this study is the result of Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (23659558; 26670535 to HY), the Strategic Research Program for Brain Sciences of the Japan Agency for Medical Research and Development (to HY and MaKa), and the Center of Innovation Program of the Japan Science and Technology Agency (HY). HY had full access to all study data and takes responsibility for its integrity and the accuracy of the data analysis. We thank Richard Lipkin, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. A research grant from Takeda Science Foundation (to HB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Yamasue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

41380_2018_249_MOESM1_ESM.docx

Supplementary information for Benner et al., “Neurochemical evidence for differential effects of acute and repeated oxytocin administration”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benner, S., Aoki, Y., Watanabe, T. et al. Neurochemical evidence for differential effects of acute and repeated oxytocin administration. Mol Psychiatry 26, 710–720 (2021). https://doi.org/10.1038/s41380-018-0249-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0249-4

This article is cited by

Search

Quick links