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CORRESPONDENCE

Variability in DNA methylation at the serotonin transporter gene
promoter: epigenetic mechanism or cell-type artifact?
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Swartz et al. [1] report that an epigenetic signature links
socioeconomic status (SES) to amygdala function and
depression, built on an impressive prospective design. Here,
we discuss the methods for quantifying blood DNA
methylation (DNAm) employed in this study, focusing on
their use of principal component analysis (PCA) to collapse
20 target CpG sites and extract one PC without prior cor-
rection of blood cell-type heterogeneity in DNAm profiles.
Since the primary driver of variability in DNAm within
whole blood is cell type [2–5], we argue that the index used
in this analysis is likely reflective of interindividual differ-
ences in cell-type proportions rather than the DNAm
mechanism inferred by the authors. We demonstrate this
position analytically using publicly available DNAm data.

CpG sites located in the proximal promoter of the ser-
otonin transporter gene (SLC6A4) were targeted by Swartz
et al. [1] using bisulfite pyrosequencing. CpG sites are
densely located at many gene promoters, referred to as
“CpG islands”, which are typically unmethylated [6].
Consequently, there tends to be a low dynamic range of
DNAm across individuals for promoter sites containing
CpG islands. These invariable measurements are partly
attributed to the way that DNAm is quantified: a single CpG
site is present two times per cell, one on each of a chro-
mosome pair, and thus DNA can be 0, 50 (rarely) or 100%
methylated. An average across thousands or millions of
cells present in a typical biological sample results in DNAm
values ranging between 0 and 100% methylated, with CpG
island sites typically demonstrating values very close to
zero. This is indeed the case with the 20 CpGs used by the
authors (from a prior publication), which demonstrate a

mean percent methylation across participants ranging
between 0.88 and 3.57% methylated [7] (Supplementary
Table 1). Considering that a 5% difference in DNAm is a
commonly used threshold for a biologically meaningful
effect [8] and that 5% is the error for pyrosequencing [9],
0.88–3.57% would be considered a low range.

Although the authors address the limitations of making
inferences about DNAm in the brain using blood, the
important influence of cell-type differences in DNAm
variability is overlooked. DNAm plays an essential role in
the differentiation of tissues and cell types, resulting in
highly cell-type-specific DNAm patterns [10, 11]. Cell-type
heterogeneity within blood is generally the largest con-
tributor to DNAm variation [3–5, 12], which includes seven
cell types (and subcategories within these types) with dis-
tinct DNAm profiles. Variation attributable to cell type in
blood exceeds interindividual variability explained by age,
ethnicity, or exposures, and thus emerges in top PCs [3–5,
12]. For instance, one group reported that the top two
DNAm PCs from blood are highly significantly correlated
with cell-type proportions in five publicly available DNAm
data sets [5]. This large contribution of cell type is so robust
that the top PC is statistically leveraged by some methods
for cell-type correction [13], which has been argued to be
valid for blood samples but not necessarily for other more
homogeneous or disease-related tissues [2].

Figure 1: Below, we use two publicly available DNAm
data sets [12, 14] to argue what has been shown before: that
the primary driver of variability in DNAm data in blood,
including at the SLC6A4 promoter, is due to cell-type pro-
portions. First, for descriptive purposes, we show DNAm
levels in isolated white blood cell types for the four most
variable SLC6A4 CpGs (one of which belongs to a CpG
island, showing very low DNAm levels). DNAm at each of
these sites is highly associated with blood cell type. Because
these cell-type- specific patterns were measured on an older
array technology, there is limited representation and no
overlap with the region investigated by Swartz et al.
However, we also show data drawn from a second more
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recent data set using the Illumina EPIC array [15]. With
greater coverage, this array captures one CpG included in
the PC used by Swartz et al. Although this study ran the
array on whole blood, reference-based methods can be
applied to array data to bioinformatically estimate cell-type

proportions [8]. We correlated the estimates of cell-type
variability derived for each individual with (1) DNAm at the
Swartz CpG site, (2) within 1000 bp of this region, (3)
across SLC6A4, and (4) across all CpG sites assayed by the
EPIC array, and show that in all cases, cell-type proportions

a. SLC6A4 Variable CpG β Values By Blood Cell Types   

b. Associations between First PC of Cell Count Predictions and DNA methylation  
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and DNAm are extremely, highly correlated. Although not
conclusive, this analysis strongly suggests that the variable
probes contributing to the first PC used in the authors’
analysis do indeed reflect cell-type proportions rather than
interindividual variability in DNAm.

This observation warrants an adjustment of the inter-
pretation that DNAm status of the SLC6A4 promoter is
predicted by SES, and in turn predicts amygdala reactivity,
at least until the finding is replicated in the context of cell-
type correction or cell-type confounding is explicitly tested
in the author’s data. Indeed, blood cell-type proportions can
themselves be related to environmental exposures [16]. We
previously documented that after correcting for cell type in
blood samples, a connection between DNAm and current
SES was no longer present [17]. Moreover, it was recently
reported that the ratio of inflammatory to antiviral white
blood cell types, calculated bioinformatically using DNAm
profiles, mediated the association between SES and chronic
illness. Specifically, a higher ratio of monocytes and natural
killer cells (i.e., markers of chronic inflammation) to T and
B cells (adaptive immune system and antiviral cells)
accounted for the relationship between low SES and chronic
disease [18]. These reported interindividual cell-type dif-
ferences in immune cells are consistent with a broad

literature linking circulating immune cells to stress levels as
an adaptive response of the body to threat [19].

It is thus essential to determine whether findings from the
target article reflect DNAm variability, cell-type proportion
differences related to SES, or a combination of the two.
Regardless, these findings provide an intriguing example of
the complexity of the biological processes potentially
affected by SES.
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