Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

What does plasma CRP tell us about peripheral and central inflammation in depression?

Abstract

Peripheral blood C-reactive protein (CRP) is a biomarker used clinically to measure systemic inflammation and is reproducibly increased in a subset of patients with major depressive disorder (MDD). Furthermore, increased peripheral blood CRP in MDD has been associated with altered reward circuitry and increased brain glutamate in relation with symptoms of anhedonia. Nevertheless, the relationship between peripheral CRP and other peripheral and central markers of inflammation in depressed patients has not been established. Plasma (n = 89) and CSF (n = 73) was collected from medically stable, currently unmedicated adult outpatients with MDD. Associations among plasma and CSF CRP and plasma and CSF inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF] and IL-1beta) and their soluble receptors/antagonists were examined. Relationships between plasma and CSF inflammatory markers and depressive symptoms including anhedonia and reduced motivation (RM) were also explored. Plasma CRP was correlated with multiple plasma inflammatory markers (all p < 0.05), and a strong correlation was found between plasma and CSF CRP (r = 0.855, p < 0.001). CSF CRP in turn correlated with CSF cytokine receptors/antagonists (all p < 0.05). Principal component analyses revealed clusters of CSF inflammatory markers that were associated with high plasma CRP (>3 mg/L) and correlated with depressive symptom severity. These findings were driven by CSF TNF, which correlated with RM (r = 0.236, p = 0.045), and CSF IL-6 soluble receptor, which correlated with anhedonia (r = 0.301, p = 0.010) in the sample as a whole and particularly females. CRP appears to be a peripheral biomarker that reflects peripheral and central inflammation and seems well-suited for guiding immunotherapies targeting TNF and IL-6 in patients with MDD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71:171–86.

    Article  CAS  PubMed  Google Scholar 

  2. Miller AH, Haroon E, Felger JC. Therapeutic Implications of Brain-Immune Interactions: treatment in translation. Neuropsychopharmacology. 2017;42:334–59.

    Article  CAS  PubMed  Google Scholar 

  3. Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine. 1997;9:853–8.

    Article  CAS  PubMed  Google Scholar 

  4. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimaki M. Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. 2015;49:206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wium-Andersen MK, Orsted DD, Nielsen SF, Nordestgaard BG. Elevated C-reactive protein levels, psychological distress, and depression in 73,131 individuals. JAMA Psychiatry. 2013;70:176–84.

    Article  CAS  PubMed  Google Scholar 

  6. Gimeno D, Kivimaki M, Brunner EJ, Elovainio M, De Vogli R, Steptoe A, et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol Med. 2009;39:413–23.

    Article  CAS  PubMed  Google Scholar 

  7. Au B, Smith KJ, Gariepy G, Schmitz N. The longitudinal associations between C-reactive protein and depressive symptoms: evidence from the English Longitudinal Study of Ageing (ELSA). Int J Geriatr Psychiatry. 2015;30:976–84.

    Article  PubMed  Google Scholar 

  8. Strawbridge R, Arnone D, Danese A, Papadopoulos A, Herane Vives A, Cleare AJ. Inflammation and clinical response to treatment in depression: a meta-analysis. Eur Neuropsychopharmacol. 2015;25:1532–43.

    Article  CAS  PubMed  Google Scholar 

  9. Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer A, Aitchison KJ, et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology. 2013;38:377–85.

    Article  CAS  PubMed  Google Scholar 

  10. Cattaneo A, Ferrari C, Uher R, Bocchio-Chiavetto L, Riva MA, Consortium MRCI, et al. Absolute measurements of macrophage migration inhibitory factor and interleukin-1-beta mRNA levels accurately predict treatment response in depressed patients. Int J Neuropsychopharmacol. 2016;19:pyw045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rhodes B, Furnrohr BG, Vyse TJ. C-reactive protein in rheumatology: biology and genetics. Nat Rev Rheumatol. 2011;7:282–9.

    Article  CAS  PubMed  Google Scholar 

  12. Devaraj S, Yun JM, Duncan-Staley C, Jialal I. C-reactive protein induces M-CSF release and macrophage proliferation. J Leukoc Biol. 2009;85:262–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aziz N, Fahey JL, Detels R, Butch AW. Analytical performance of a highly sensitive C-reactive protein-based immunoassay and the effects of laboratory variables on levels of protein in blood. Clin Diagn Lab Immunol. 2003;10:652–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coventry BJ, Ashdown ML, Quinn MA, Markovic SN, Yatomi-Clarke SL, Robinson AP. CRP identifies homeostatic immune oscillations in cancer patients: a potential treatment targeting tool? J Transl Med. 2009;7:102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  CAS  PubMed  Google Scholar 

  16. Ridker PM. Inflammatory biomarkers and risks of myocardial infarction, stroke, diabetes, and total mortality: implications for longevity. Nutr Rev. 2007;65:S253–259.

    Article  PubMed  Google Scholar 

  17. Ridker PM. Cardiology patient page. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation. 2003;108:e81–85.

    CAS  PubMed  Google Scholar 

  18. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–9.

    Article  PubMed  Google Scholar 

  19. Couzin-Frankel J. Inflammation bares a dark side. Science. 2010;330:1621.

    Article  CAS  PubMed  Google Scholar 

  20. Rapaport MH, Nierenberg AA, Schettler PJ, Kinkead B, Cardoos A, Walker R, et al. Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study. Mol Psychiatry. 2016;21:71–79.

    Article  CAS  PubMed  Google Scholar 

  21. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70:31–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X, et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry. 2016;21:1358–65.

    Article  CAS  PubMed  Google Scholar 

  23. Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T, et al. Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry. 2016;21:1351–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Uher R, Tansey KE, Dew T, Maier W, Mors O, Hauser J, et al. An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. Am J Psychiatry. 2014;171:1278–86.

    Article  PubMed  Google Scholar 

  25. Felger JC, Mun J, Kimmel HL, Nye JA, Drake DF, Hernandez CR, et al. Chronic interferon-alpha decreases dopamine 2 receptor binding and striatal dopamine release in association with anhedonia-like behavior in non-human primates. Neuropsychopharmacology. 2013;38:2179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, Crowe RJ, et al. Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry. 2012;69:1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry. 2010;68:748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harrison NA, Voon V, Cercignani M, Cooper EA, Pessiglione M, Critchley HD. A neurocomputational account of how inflammation enhances sensitivity to punishments versus rewards. Biol Psychiatry. 2015;80:73–81.

    Article  PubMed  Google Scholar 

  29. Haroon E, Felger JC, Woolwine BJ, Chen X, Parekh S, Spivey JR, et al. Age-related increases in basal ganglia glutamate are associated with TNF, reduced motivation and decreased psychomotor speed during IFN-alpha treatment: Preliminary findings. Brain Behav Immun. 2015;46:17–22.

    Article  CAS  PubMed  Google Scholar 

  30. Lindqvist D, Janelidze S, Hagell P, Erhardt S, Samuelsson M, Minthon L, et al. Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol Psychiatry. 2009;66:287–92.

    Article  CAS  PubMed  Google Scholar 

  31. Levine J, Barak Y, Chengappa KN, Rapoport A, Rebey M, Barak V. Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology. 1999;40:171–6.

    Article  CAS  PubMed  Google Scholar 

  32. Martinez JM, Garakani A, Yehuda R, Gorman JM. Proinflammatory and “resiliency” proteins in the CSF of patients with major depression. Depress Anxiety. 2012;29:32–38.

    Article  CAS  PubMed  Google Scholar 

  33. Quan N, Banks WA. Brain-immune communication pathways. Brain Behav Immun. 2007;21:727–35.

    Article  CAS  PubMed  Google Scholar 

  34. Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci. 2000;85:49–59.

    Article  CAS  PubMed  Google Scholar 

  35. D’Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor alpha signaling during peripheral organ inflammation. J Neurosci. 2009;29:2089–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Felger JC, Treadway MT. Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology. 2017;42:216–41.

    Article  CAS  PubMed  Google Scholar 

  37. Wolkowitz OM, Papadopoulos NM, Costello R, Breier A, Doran AR, Pickar D, et al. Prednisone effects on blood–brain barrier permeability and CNS IgG synthesis in healthy humans. Psychoneuroendocrinology. 1990;15:155–8.

    Article  CAS  PubMed  Google Scholar 

  38. Williams JB. A structured interview guide for the Hamilton Depression Rating Scale. Arch General Psychiatry. 1988;45:742–7.

    Article  CAS  Google Scholar 

  39. Hamilton M. A rating scale for depression. J Neurol, Neurosurg, Psychiatry. 1960;23:56–62.

    Article  CAS  Google Scholar 

  40. Goldsmith DR, Haroon E, Woolwine BJ, Jung MY, Wommack EC, Harvey PD, et al. Inflammatory markers are associated with decreased psychomotor speed in patients with major depressive disorder. Brain Behav Immun. 2016;56:281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rush AJ, Gullion CM, Basco MR, Jarrett RB, Trivedi MH. The Inventory of Depressive Symptomatology (IDS): psychometric properties. Psychol Med. 1996;26:477–86.

    Article  CAS  PubMed  Google Scholar 

  42. Smets EM, Garssen B, Bonke B, De Haes JC. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res. 1995;39:315–25.

    Article  CAS  PubMed  Google Scholar 

  43. Ameli R, Luckenbaugh DA, Gould NF, Holmes MK, Lally N, Ballard ED, et al. SHAPS-C: the Snaith-Hamilton pleasure scale modified for clinician administration. PeerJ. 2014;2:e429.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lindqvist D, Hall S, Surova Y, Nielsen HM, Janelidze S, Brundin L, et al. Cerebrospinal fluid inflammatory markers in Parkinson’s disease--associations with depression, fatigue, and cognitive impairment. Brain Behav Immun. 2013;33:183–9.

    Article  CAS  PubMed  Google Scholar 

  45. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67:446–57.

    Article  CAS  PubMed  Google Scholar 

  46. Bower JE, Ganz PA, Aziz N, Fahey JL. Fatigue and proinflammatory cytokine activity in breast cancer survivors. Psychosom Med. 2002;64:604–11.

    Article  PubMed  Google Scholar 

  47. Collado-Hidalgo A, Bower JE, Ganz PA, Cole SW, Irwin MR. Inflammatory biomarkers for persistent fatigue in breast cancer survivors. Clin Cancer Res. 2006;12:2759–66.

    Article  CAS  PubMed  Google Scholar 

  48. Breen EC, Perez C, Olmstead R, Eisenberger N, Irwin MR. Comparison of multiplex immunoassays and ELISAs for the determination of circulating levels of inflammatory cytokines. Brain Behavior Immun. 2014;40:e39.

  49. Epstein MM, Breen EC, Magpantay L, Detels R, Lepone L, Penugonda S, et al. Temporal stability of serum concentrations of cytokines and soluble receptors measured across two years in low-risk HIV-seronegative men. Cancer Epidemiol Biomark Prev. 2013;22:2009–15.

    Article  CAS  Google Scholar 

  50. Moieni M, Irwin MR, Jevtic I, Olmstead R, Breen EC, Eisenberger NI. Sex differences in depressive and socioemotional responses to an inflammatory challenge: implications for sex differences in depression. Neuropsychopharmacology. 2015;40:1709–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Inagaki TK, Muscatell KA, Irwin MR, Moieni M, Dutcher JM, Jevtic I, et al. The role of the ventral striatum in inflammatory-induced approach toward support figures. Brain Behav Immun. 2015;44:247–52.

    Article  PubMed  Google Scholar 

  52. Kwak SG, Kim JH. Central limit theorem: the cornerstone of modern statistics. Korean J Anesthesiol. 2017;70:144–56.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Raison CL, Borisov AS, Majer M, Drake DF, Pagnoni G, Woolwine BJ, et al. Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression. Biol Psychiatry. 2009;65:296–303.

    Article  CAS  PubMed  Google Scholar 

  54. Torres MA, Pace TW, Liu T, Felger JC, Mister D, Doho GH, et al. Predictors of depression in breast cancer patients treated with radiation: role of prior chemotherapy and nuclear factor kappa B. Cancer. 2013;119:1951–9.

    Article  PubMed  Google Scholar 

  55. Haroon E, Felger JC, Woolwine BJ, Chen X, Parekh S, Spivey JR, et al. Age-related increases in basal ganglia glutamate are associated with TNF, reduced motivation and decreased psychomotor speed during IFN-alpha treatment: Preliminary findings. Brain Behav Immun. 2014;46:17–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Grimsholm O, Rantapaa-Dahlqvist S, Forsgren S. Levels of gastrin-releasing peptide and substance P in synovial fluid and serum correlate with levels of cytokines in rheumatoid arthritis. Arthritis Res Ther. 2005;7:R416–426.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Capuron L, Lasselin J, Castanon N. Role of adiposity-driven inflammation in depressive morbidity. Neuropsychopharmacology. 2017;42:115–28.

    Article  CAS  PubMed  Google Scholar 

  58. Gray MT, Woulfe JM. Striatal blood–brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab. 2015;35:747–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pisani V, Stefani A, Pierantozzi M, Natoli S, Stanzione P, Franciotta D, et al. Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson’s disease. J Neuroinflamm. 2012;9:188.

    Article  CAS  Google Scholar 

  60. Algotsson A, Winblad B. The integrity of the blood–brain barrier in Alzheimer’s disease. Acta Neurol Scand. 2007;115:403–8.

    Article  CAS  PubMed  Google Scholar 

  61. Farrall AJ, Wardlaw JM. Blood–brain barrier: ageing and microvascular disease--systematic review and meta-analysis. Neurobiol Aging. 2009;30:337–52.

    Article  CAS  PubMed  Google Scholar 

  62. Kirch DG, Alexander RC, Suddath RL, Papadopoulos NM, Kaufmann CA, Daniel DG, et al. Blood-CSF barrier permeability and central nervous system immunoglobulin G in schizophrenia. J Neural Transm Gen Sect. 1992;89:219–32.

    Article  CAS  PubMed  Google Scholar 

  63. Juma WM, Lira A, Marzuk A, Marzuk Z, Hakim AM, Thompson CS. C-reactive protein expression in a rodent model of chronic cerebral hypoperfusion. Brain Res. 2011;1414:85–93.

    Article  CAS  PubMed  Google Scholar 

  64. Wight RD, Tull CA, Deel MW, Stroope BL, Eubanks AG, Chavis JA, et al. Resveratrol effects on astrocyte function: relevance to neurodegenerative diseases. Biochem Biophys Res Commun. 2012;426:112–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dong Q, Wright JR. Expression of C-reactive protein by alveolar macrophages. J Immunol. 1996;156:4815–20.

    CAS  PubMed  Google Scholar 

  66. Reyes TM, Coe CL. Interleukin-1 beta differentially affects interleukin-6 and soluble interleukin-6 receptor in the blood and central nervous system of the monkey. J Neuroimmunol. 1996;66:135–41.

    Article  CAS  PubMed  Google Scholar 

  67. Re F, Mengozzi M, Muzio M, Dinarello CA, Mantovani A, Colotta F. Expression of interleukin-1 receptor antagonist (IL-1ra) by human circulating polymorphonuclear cells. Eur J Immunol. 1993;23:570–3.

    Article  CAS  PubMed  Google Scholar 

  68. Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J. 2001;15:43–58.

    Article  CAS  PubMed  Google Scholar 

  69. Raison CL, Borisov AS, Woolwine BJ, Massung B, Vogt G, Miller AH. Interferon-alpha effects on diurnal hypothalamic-pituitary-adrenal axis activity: relationship with proinflammatory cytokines and behavior. Mol Psychiatry. 2010;15:535–47.

    Article  CAS  PubMed  Google Scholar 

  70. Wichers MC, Kenis G, Koek GH, Robaeys G, Nicolson NA, Maes M. Interferon-alpha-induced depressive symptoms are related to changes in the cytokine network but not to cortisol. J Psychosom Res. 2007;62:207–14.

    Article  PubMed  Google Scholar 

  71. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry. 2010;15:393–403.

    Article  CAS  PubMed  Google Scholar 

  72. Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta. 2016;1863:1218–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Atlanta Clinical and Translational Science Institute (ACSTI) Clinical Research Network (CRN) staff.

Funding

This study was supported by grants R01MH087604, R25MH101079 (AHM), R01MH109637, R21MH106904 (JCF), and R01MH H107033 (EH) from the National Institute of Mental Health; and grants BBRF22296 from the Brain and Behavioral Research Foundation and CADF49143 from the Dana Foundation (JCF). In addition, the study was supported in part by PHS Grants UL1TR000454 and KL2TR000455 from the Clinical and Translational Science Award program, and by the NIH/NCI under award number P30CA138292.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer C. Felger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felger, J.C., Haroon, E., Patel, T.A. et al. What does plasma CRP tell us about peripheral and central inflammation in depression?. Mol Psychiatry 25, 1301–1311 (2020). https://doi.org/10.1038/s41380-018-0096-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0096-3

This article is cited by

Search

Quick links