Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

5-HT2A receptor-dependent phosphorylation of mGlu2 receptor at Serine 843 promotes mGlu2 receptor-operated Gi/o signaling

Abstract

The serotonin 5-HT2A and glutamate mGlu2 receptors continue to attract particular attention, given their implication in psychosis associated with schizophrenia and the mechanism of action of atypical antipsychotics and a new class of antipsychotics, respectively. A large body of evidence indicates a functional crosstalk between both receptors in the brain, but the underlying mechanisms are not entirely elucidated. Here, we have explored the influence of 5-HT2A receptor upon the phosphorylation pattern of mGlu2 receptor in light of the importance of specific phosphorylation events in regulating G protein-coupled receptor signaling and physiological outcomes. Among the five mGlu2 receptor-phosphorylated residues identified in HEK-293 cells, the phosphorylation of Ser843 was enhanced upon mGlu2 receptor stimulation by the orthosteric agonist LY379268 only in cells co-expressing the 5-HT2A receptor. Likewise, administration of LY379268 increased mGlu2 receptor phosphorylation at Ser843 in prefrontal cortex of wild-type mice but not 5-HT2A−/− mice. Exposure of HEK-293 cells co-expressing mGlu2 and 5-HT2A receptors to 5-HT also increased Ser843 phosphorylation state to a magnitude similar to that measured in LY379268-treated cells. In both HEK-293 cells and prefrontal cortex, Ser843 phosphorylation elicited by 5-HT2A receptor stimulation was prevented by the mGlu2 receptor antagonist LY341495, while the LY379268-induced effect was abolished by the 5-HT2A receptor antagonist M100907. Mutation of Ser843 into alanine strongly reduced Gi/o signaling elicited by mGlu2 or 5-HT2A receptor stimulation in cells co-expressing both receptors. Collectively, these findings identify mGlu2 receptor phosphorylation at Ser843 as a key molecular event that underlies the functional crosstalk between both receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gray JA, Roth BL. Molecular targets for treating cognitive dysfunction in schizophrenia. Schizophr Bull. 2007;33:1100–19.

    PubMed  PubMed Central  Google Scholar 

  2. Meltzer HY, Massey BW, Horiguchi M. Serotonin receptors as targets for drugs useful to treat psychosis and cognitive impairment in schizophrenia. Curr Pharm Biotechnol. 2012;13:1572–86.

    CAS  PubMed  Google Scholar 

  3. Keefe RSE, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, et al. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry. 2007;64:633–47.

    CAS  PubMed  Google Scholar 

  4. Ellaithy A, Younkin J, González-Maeso J, Logothetis DE. Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends Neurosci. 2015;38:506–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gibert-Rahola J, Villena-Rodriguez A. Glutamatergic drugs for schizophrenia treatment. Actas Esp Psiquiatr. 2014;42:234–41.

    PubMed  Google Scholar 

  6. Fell MJ, McKinzie DL, Monn JA, Svensson KA. Group II metabotropic glutamate receptor agonists and positive allosteric modulators as novel treatments for schizophrenia. Neuropharmacology. 2012;62:1473–83.

    CAS  PubMed  Google Scholar 

  7. Kinon BJ, Millen BA, Zhang L, McKinzie DL. Exploratory analysis for a targeted patient population responsive to the metabotropic glutamate 2/3 receptor agonist pomaglumetad methionil in schizophrenia. Biol Psychiatry. 2015;78:754–62.

    CAS  PubMed  Google Scholar 

  8. Marek GJ, Wright RA, Schoepp DD, Monn JA, Aghajanian GK. Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther. 2000;292:76–87.

    CAS  PubMed  Google Scholar 

  9. González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 2008;452:93–7.

    PubMed  PubMed Central  Google Scholar 

  10. Moreno JL, Miranda-Azpiazu P, García-Bea A, Younkin J, Cui M, Kozlenkov A, et al. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal. 2016;9:ra5.

    PubMed  PubMed Central  Google Scholar 

  11. Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, et al. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell. 2011;147:1011–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Delille HK, Mezler M, Marek GJ. The two faces of the pharmacological interaction of mGlu2 and 5-HT2A - relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology. 2013;70:296–305.

    CAS  PubMed  Google Scholar 

  13. Butcher AJ, Kong KC, Prihandoko R, Tobin AB. Physiological role of G-protein coupled receptor phosphorylation. Handb Exp Pharmacol. 2012;208:79–94.

    CAS  Google Scholar 

  14. Karaki S, Becamel C, Murat S, Mannoury la Cour C, Millan MJ, Prézeau L, et al. Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists. Mol Cell Proteom Mcp. 2014;13:1273–85.

    CAS  Google Scholar 

  15. Schaffhauser H, Cai Z, Hubalek F, Macek TA, Pohl J, Murphy TJ, et al. cAMP-dependent protein kinase inhibits mGluR2 coupling to G-proteins by direct receptor phosphorylation. J Soc Neurosci. 2000;20:5663–70.

    CAS  Google Scholar 

  16. Lefkowitz RJ, Pierce KL, Luttrell LM. Dancing with different partners: protein kinase a phosphorylation of seven membrane-spanning receptors regulates their G protein-coupling specificity. Mol Pharmacol. 2002;62:971–4.

    CAS  PubMed  Google Scholar 

  17. Schrage R, Schmitz A-L, Gaffal E, Annala S, Kehraus S, Wenzel D, et al. The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun. 2015;6:10156.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bécamel C, Gavarini S, Chanrion B, Alonso G, Galéotti N, Dumuis A, et al. The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J Biol Chem. 2004;279:20257–66.

    PubMed  Google Scholar 

  19. Gaillard S, Lo ReL, Mantilleri A, Hepp R, Urien L, Malapert P, et al. GINIP, a Gαi-interacting protein, functions as a key modulator of peripheral GABAB receptor-mediated analgesia. Neuron. 2014;84:123–36.

    CAS  PubMed  Google Scholar 

  20. Dubois F, Vandermoere F, Gernez A, Murphy J, Toth R, Chen S, et al. Differential 14-3-3 affinity capture reveals new downstream targets of phosphatidylinositol 3-kinase signaling. Mol Cell Proteom Mcp. 2009;8:2487–99.

    CAS  Google Scholar 

  21. González-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, et al. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Soc Neurosci. 2003;23:8836–43.

    Google Scholar 

  22. Yokoi M, Kobayashi K, Manabe T, Takahashi T, Sakaguchi I, Katsuura G, et al. Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science. 1996;273:645–7.

    CAS  PubMed  Google Scholar 

  23. Chanrion B, Mannoury la Cour C, Gavarini S, Seimandi M, Vincent L, Pujol J-F, et al. Inverse agonist and neutral antagonist actions of antidepressants at recombinant and native 5-hydroxytryptamine2C receptors: differential modulation of cell surface expression and signal transduction. Mol Pharmacol. 2008;73:748–57.

    Article  CAS  Google Scholar 

  24. Delille HK, Becker JM, Burkhardt S, Bleher B, Terstappen GC, Schmidt M, et al. Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades. Neuropharmacology. 2012;62:2184–91.

    CAS  PubMed  Google Scholar 

  25. Miner LaH, Backstrom JR, Sanders-Bush E, Sesack SR. Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience. 2003;116:107–17.

    CAS  PubMed  Google Scholar 

  26. Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteom Mcp. 2008;7:1598–608.

    CAS  Google Scholar 

  27. Rena G, Bain J, Elliott M, Cohen P. D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep. 2004;5:60–5.

    CAS  PubMed  Google Scholar 

  28. Russo LC, Castro LM, Gozzo FC, Ferro ES. Inhibition of thimet oligopeptidase by siRNA alters specific intracellular peptides and potentiates isoproterenol signal transduction. FEBS Lett. 2012;586:3287–92.

    CAS  PubMed  Google Scholar 

  29. Sealfon SC, Chi L, Ebersole BJ, Rodic V, Zhang D, Ballesteros JA, et al. Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor. J Biol Chem. 1995;270:16683–8.

    CAS  PubMed  Google Scholar 

  30. Chen W-P, Kirchgessner AL. Activation of group II mGlu receptors inhibits voltage-gated Ca2 + currents in myenteric neurons. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1282–1289.

    CAS  PubMed  Google Scholar 

  31. Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP. Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature. 1997;385:442–6.

    CAS  PubMed  Google Scholar 

  32. Premont RT, Gainetdinov RR. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol. 2007;69:511–34.

    CAS  PubMed  Google Scholar 

  33. Reiter E, Ahn S, Shukla AK, Lefkowitz RJ. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol. 2012;52:179–97.

    CAS  PubMed  Google Scholar 

  34. Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, et al. Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci Signal. 2011;4:ra51.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Butcher AJ, Prihandoko R, Kong KC, McWilliams P, Edwards JM, Bottrill A, et al. Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J Biol Chem. 2011;286:11506–18.

    CAS  PubMed  Google Scholar 

  36. Busillo JM, Armando S, Sengupta R, Meucci O, Bouvier M, Benovic JL. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J Biol Chem. 2010;285:7805–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, et al. A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci USA. 2007;104:16657–62.

    CAS  PubMed  Google Scholar 

  38. Tobin AB, Butcher AJ, Kong KC. Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci. 2008;29:413–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moulédous L, Froment C, Dauvillier S, Burlet-Schiltz O, Zajac J-M, Mollereau C. GRK2 protein-mediated transphosphorylation contributes to loss of function of μ-opioid receptors induced by neuropeptide FF (NPFF2) receptors. J Biol Chem. 2012;287:12736–49.

    PubMed  PubMed Central  Google Scholar 

  40. Moreno JL, Holloway T, Albizu L, Sealfon SC, González-Maeso J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett. 2011;493:76–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron. 2007;53:439–52.

    PubMed  Google Scholar 

  42. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology. 2011;60:1017–41.

    CAS  PubMed  Google Scholar 

  43. Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal. 2005;17:675–89.

    CAS  PubMed  Google Scholar 

  44. Yang Y, Xu T, Zhang Y, Qin X. Molecular basis for the regulation of the circadian clock kinases CK1δ and CK1ε. Cell Signal. 2017;31:58–65.

    CAS  PubMed  Google Scholar 

  45. El Moustaine D, Granier S, Doumazane E, Scholler P, Rahmeh R, Bron P, et al. Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc Natl Acad Sci USA. 2012;109:16342–7.

    CAS  PubMed  Google Scholar 

  46. Dean B. The cortical serotonin2A receptor and the pathology of schizophrenia: a likely accomplice. J Neurochem. 2003;85:1–13.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from la Fondation pour la Recherche Médicale, ANR (Contract no. ANR-08-MNPS-0011), CNRS, INSERM, and University of Montpellier to P.M. and F.V. E.B. is supported by the LABEX Ion Channel Science and Therapeutics (ICST). Mass spectrometry experiments were carried out using facilities of the Functional Proteomic Platform of Montpellier Languedoc-Roussillon. S.M. was a recipient of a fellowship from the French Ministry for Research.

Author contributions:

S.M. performed biochemical and electrophysiology experiments, some LC-MS/MS analyses, and participated in manuscript writing. M.B. and J.C. performed some biochemical experiments and LC-MS/MS analyses. P.M. conceived the study, supervised experiments, and wrote the manuscript. F.V. conceived the study, performed LC-MS/MS analyses and some biochemical experiments, supervised experiments, and wrote the manuscript. J.B. conceived the study and participated in manuscript writing. E.B. supervised electrophysiology experiments. G.K. and E.K. extracted and purified FR900359 from Ardisia crenata plant. G.B. and F.N. participated in experiments on mGlu2−/− mice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philippe Marin or Franck Vandermoere.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murat, S., Bigot, M., Chapron, J. et al. 5-HT2A receptor-dependent phosphorylation of mGlu2 receptor at Serine 843 promotes mGlu2 receptor-operated Gi/o signaling. Mol Psychiatry 24, 1610–1626 (2019). https://doi.org/10.1038/s41380-018-0069-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0069-6

This article is cited by

Search

Quick links