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Abstract
Immunohistochemistry (IHC) is a diagnostic technique used throughout pathology. A machine learning algorithm that could
predict individual cell immunophenotype based on hematoxylin and eosin (H&E) staining would save money, time, and
reduce tissue consumed. Prior approaches have lacked the spatial accuracy needed for cell-specific analytical tasks. Here
IHC performed on destained H&E slides is used to create a neural network that is potentially capable of predicting individual
cell immunophenotype. Twelve slides were stained with H&E and scanned to create digital whole slide images. The H&E
slides were then destained, and stained with SOX10 IHC. The SOX10 IHC slides were scanned, and corresponding H&E
and IHC digital images were registered. Color-thresholding and machine learning techniques were applied to the registered
H&E and IHC images to segment 3,396,668 SOX10-negative cells and 306,166 SOX10-positive cells. The resulting
segmentation was used to annotate the original H&E images, and a convolutional neural network was trained to predict
SOX10 nuclear staining. Sixteen thousand three hundred and nine image patches were used to train the virtual IHC (vIHC)
neural network, and 1,813 image patches were used to quantitatively evaluate it. The resulting vIHC neural network
achieved an area under the curve of 0.9422 in a receiver operator characteristics analysis when sorting individual nuclei. The
vIHC network was applied to additional images from clinical practice, and was evaluated qualitatively by a board-certified
dermatopathologist. Further work is needed to make the process more efficient and accurate for clinical use. This proof-of-
concept demonstrates the feasibility of creating neural network-driven vIHC assays.

Introduction

Since the 1980s [1], immunohistochemistry (IHC) has been
an integral part of anatomic pathology, aiding in the diag-
nosis of both benign and malignant lesions. Even though
there is near ubiquitous use of IHC in modern anatomic
pathology labs, it has several flaws. The technique increases
turnaround time, consumes tissue, and has a nontrivial cost.

In cases where large panels of IHC are required, as well as
in small biopsies where tissue is limited, these limitations
can be significant. In addition, the financial burden of IHC
may be prohibitive in resource-limited regions around the
world. While IHC can make important contributions to
rendering a diagnosis, a more rapid and more economical
alternative would be welcome.

In pathology, machine learning has been gaining pro-
minence. A particular form of machine learning, the con-
volutional neural network (CNN), has proven to be
particularly well-suited for use with whole slide images
(WSI) [2]. There are several types of CNNs, and they are
typically named after the task which they perform. Cate-
gorical CNNs, for example, classify images into predefined
categories. Segmentation CNNs are similar, but categorize
sub-regions within an image into different predefined
categories.

CNNs are created in two steps. The first step is the
assembly of annotated (labeled) images, and the second step
is inputting these images into the CNN and training it to
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predict the image labels (Fig. 1a). Once this is complete, the
CNN can be empirically evaluated on new images (Fig. 1b).

For segmentation CNNs, the correct image annotation is
referred to as the ground-truth mask. A number of methods
can be used to generate the ground-truth mask. In digital
pathology, these are often created by a pathologist that
manually annotates the different regions of an image. This
approach has already been used in cervical cancer [3], skin
lesions [4, 5], breast cancer [6–8], kidneys [9], lungs [10],
and colon cancers [11]. Despite its popularity, this approach
is time-intensive and susceptible to human bias.

Significant efforts have focused on creating machine
learning algorithms capable of rendering a diagnosis with-
out the aid of a human being [12], but there are barriers to
clinical implementation. Substantial regulatory and safety
concerns must be addressed when automating a diagnosis
without human supervision [13]. In addition, some believe
inertia within the field of medicine has already stalled early
efforts at using machine learning in clinical practice [14].
But algorithms designed to aide pathologists and clinicians
in an ancillary manner may be useful in the near future.
Such approaches have been used in the research setting for
non-small cell lung cancer prognostication [15], predicting
recurrence in early stage colon cancer [16], and predicting
molecular aberrations [10, 17].

Unsupervised CNNs have also made inroads into
antibody-based ancillary testing. In such approaches,
ground-truth masks are generated from antibody-bound
slides. These are used with their corresponding H&E ima-
ges to train a CNN. Recent examples of these used IHC
performed on tissue slightly deeper in the tissue block

[18, 19]. This method has the advantage of using data,
which is already available from clinical practice, and does
not require pathologists to laboriously annotate images. In
addition, the ground truth is unbiased, and the process can
easily be automated. Using the subsequent tissue layer,
however, does not yield precise cell-specific classification.
Such precision may be vital in cases of microinvasion and
micrometastasis, lesions with mixed cell populations, and
lesions where individual cell immunophenotype is vital to
the diagnosis. Moreover, as this technique cannot classify
individual cells, it cannot accurately quantify lesional cells
or perform cell-specific analytical tasks that may one day be
useful in cancer staging and prognostication [20–23].

An alternative approach was recently developed where
antibodies on the same tissue layer as the H&E WSI were
used to generate the ground-truth mask. In one approach,
immunofluorescence was used instead of IHC [24, 25]. This
work achieved an accuracy of 94.5% when using cytoker-
atin and smooth muscle actin markers in pancreatic tissue.
The disadvantages of using immunofluorescence are (I) that
it is not commonly used to classify immunophenotype in
the clinical setting, (II) it undergoes a loss of signal over
time when exposed to light [26], (III) requires specialized
equipment to perform, and (IV) is subject to considerable
variation between different runs and different laboratories
[27]. In an alternative approach, a recent study used
phosphohistone-H3 IHC, performed on the same tissue
layer as H&E to count mitoses within a cohort of breast
cancer cases [28]. This algorithm appeared to have yielded
adequate resolution, but has limited benefit since IHC is not
required to count mitoses.

Fig. 1 Convolutional neural
network (CNN) overview.
a CNNs are first trained on a set
of annotated images. This
iterative process is continued
until the CNN can accurately
predict the image labels. b Once
the CNN is trained, it can then
be fed new images and output
predicted labels.
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We hypothesize that a CNN could provide information
that is currently only obtainable from IHC, in a manner that
is rapid and inexpensive. Specifically, a CNN could
potentially predict cell-specific immunophenotype based on
H&E characteristics, and graphically represent this predic-
tion as a WSI. We term the technique virtual IHC (vIHC).
Herein, we document a pilot study using the SOX10 nuclear
stain. By selecting regions of interest (ROI) in skin and
lymph node biopsies, we created a neural network specifi-
cally designed to identify cells of melanocytic lineage. We
report its successes, limitations, and outline directions for
future works.

Material and methods

WSI preparation

A database search at our institution was carried out for
recent cases that had been stained with SOX10 IHC as part
of their routine workup. Cases that had abundant tissue and
represented a range of diagnoses were favored. The set of
12 slides (NN-master set), from both skin (nine cases) and
lymph nodes (three cases), consisted of eight melanomas,
two in situ melanomas, one neuroma, and one pigmented
basal cell carcinoma.

The images in the NN-master set were processed and
used to train the vIHC CNN. A diagram depicting the full
process is shown in Fig. 2. New tissue sections were first cut
from the tissue blocks at 5 μm and stained with H&E. The
slides were scanned at 400× (Fig. 2a) using the Leica
Aperio AT2 scanner (Buffalo Grove, IL, USA). A washout
process was applied to the slides to remove the H&E stain
(Fig. 2b). The slides were then stained with SOX10 IHC
(Leica, PA0813, pre-diluted) using automated techniques
(Leica Bond; Leica Microsystems, Bannockburn, IL, USA)
with appropriate controls (Fig. 2c). The resulting SOX10
IHC slides were scanned at 400× (Fig. 2d).

Registration

Registration is the process of aligning two images. In our
study, the H&E and IHC WSIs were too large to be loaded
into RAM at the same time, so they were registered in two
steps similar to previously published work [29]. In the first
step, the entire images were approximately registered. Then,
ROI (see below) were more precisely registered so that
corresponding nuclei in both images were superimposed
onto one another (Fig. 2d). Specifically, the first step was a
multimodal affine registration that allowed for rotation,
translation, changes in scale, and shearing. In the second
step, the images were divided into 1,000 × 1,000-pixel sub-
image, some of which overlapped with selected ROI. The

multimodal affine registration was repeated at high magni-
fication for the sub-images that overlapped the ROI. This
was followed by a nonrigid transformation function native
to MATLAB [30, 31].

It was noted that the above described method resulted in
poor nuclear overlap in 34.5% of sub-images. It was
assumed that poorly registered images could result in mis-
labeled nuclei and would be deleterious to training the
neural network. To ensure high-quality annotation, a cate-
gorical CNN was trained to distinguish well-registered sub-
images from poorly registered sub-images. This was used to
remove poorly registered sub-images from the NN-
master set.

Regions of interest (ROI)

In the present iteration, only ROI were fully registered. A
pathologist manually circled the ROI using the paintbrush
tool in MS Paint (Microsoft, Redmond, WA, USA) in
copies of the IHC WSI. A MATLAB code was created to
read the annotated IHC images and extract the annotated
regions, which were then used in the registration process.
All regions that contained SOX10-positive melanocytes
were annotated as ROI, while all regions without SOX10

Fig. 2 Diagram summarizing the methodology used to create the
virtual immunohistochemistry (vIHC) neural network training set.
Hematoxylin and eosin (H&E) slides were first prepared from
formalin-fixed paraffin-embedded tissue. The H&E slides were first
scanned (a) to create digital H&E whole slide images (WSI). The H&E
slides were then (b) destained and (c) stained with SOX10 immuno-
histochemistry (IHC). The resulting IHC slides were scanned (d) to
create a digital IHC WSI. The H&E and corresponding IHC WSIs
were registered (e), and processed (f) to create a ground-truth mask. In
the ground-truth masks, SOX10-positive nuclei are colored yellow and
SOX10-negative nuclei are colored green.
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positivity and regions with nonmelanocytic SOX10-positive
cells were purposefully excluded.

Seeding

Seeding techniques were developed to accurately count and
localize cells, without painstakingly annotating cellular
contours [32]. In these techniques, a segmentation CNN is
trained to recognize the center of the nucleus, which is
annotated with a single dot [32–35]. Here, 500 H&E images
were generated from clinical practice, each having a reso-
lution of 500 × 500 pixels. The center of each nucleus was
manually annotated by a pathologist using MS Paint, and
was performed by adding a green dot to the center of each
nucleus. A MATLAB code was generated to read the dotted
images, and convert these into a ground-truth mask. These
were used to train a CNN capable of segmenting individual
cells, which was used as part of the annotation process
described below.

Annotation

Annotation is the process of labeling regions within an
image to create a ground-truth mask. Typically, different
colors are used to annotate different regions. Here, the
training images were annotated using automated techniques.
The nuclei from the H&E images were annotated by the
seeding CNN described above. In each ROI, a color-
thresholding technique was applied to the corresponding
registered IHC image to allow for positive staining to
automatically be distinguished from negative staining. The
individual nuclei were classified as positive or negative, and
labeled accordingly. The result was a final ground-truth
mask, where SOX10-positive nuclei were labeled as yellow,
and SOX10-negative nuclei were labeled as green (Fig. 2e).
All nuclei that were outside the ROI were automatically
categorized as negative.

In addition, all sub-images with <20 nuclei were dis-
carded. The resulting master neural network set (NN-mas-
ter) consisted of 18,122 images. Ninety percent of these
images were randomly assigned to train the SOX10-vIHC
neural network (NN-train set; 16,309 images), and the
remaining 10% were used to test it (NN-test set; 1,813
images). All image sets are described in Table 1. The total
number of sub-images, the number of well-registered sub-
images with more than 20 nuclei, and the number of
SOX10-positive and SOX10-negative cells for each WSI in
the NN-master, NN-train, and NN-test sets are shown in
Table 2. The annotation process was entirely automated
using a MATLAB code.

Once the SOX10-vIHC network was trained, it could be
run on new images to generate positive-nucleus scores,
negative-nucleus scores, and background score. TheseTa
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scores corresponded to the probability that a given pixel
corresponded to a SOX10-positive nucleus, a SOX10-
negative nucleus, or a nonnuclear region, respectively.

CNN specifications

All CNNs were created using either a pretrained VGG19
network [36] or InceptionV3 network [37] using MATLAB
R2018b (MathWorks, version 9.5.0.944444, Natick, MA,
USA). The networks were trained using a Titan Xp (NVi-
dia, Santa Clara, CA, USA) graphics processing unit and a
Ryzen Threadripper 1950×16-Core CPU (Advanced Micro
Devices [AMD], Santa Clara, CA, USA). Each network was
trained between 30 and 300 epochs.

Evaluation

The SOX10-vIHC network was first evaluated by proces-
sing the NN-test set images. A MATLAB program was
created to compare the vIHC output predictions to their
corresponding ground-truth masks. This was performed on
a per-cell basis by setting all areas with combined SOX10
positivity and negativity scores <0.95 to 0. A connected-
components analysis was then performed to delineate each
nucleus. The mean SOX10-positivity score and SOX10-
negativity score for each segmented nucleus was computed,
and the category with the largest score was recorded and
compared with the ground truth category. The results for
20,000 SOX10-positive and 20,000 SOX10-negative cells
were randomly selected using the randperm function native
to MATLAB. These were aggregated and used to calculate
the true positive (TP), true negative (TN), false positive, and
false negative values (Fig. 3). A cumulative density plot and

a receiver operator characteristics (ROC) curve was pro-
duced using these scores (Figs. 4, 5).

To comprehensively analyze the vIHC and IHC, the two
were directly compared qualitatively by an experienced

Table 2 Histopathologic
characteristics of the
NN-master set.

Case Location Lesion type Sub-
images

Number of cells Cell-fraction
of data set [%]

SOX10-
positive

SOX10-
negative

Percent SOX10-
positive [%]

1 Skin MIS 1,987 654 317,261 0.2 8.4

2 Skin MIS 1,290 594 187,875 0.3 5.0

3 Skin Melanoma 2,168 19,142 336,058 5.4 9.4

4 Skin Melanoma 2,004 19,551 264,744 6.9 7.5

5 Skin BCC 260 1,051 58,222 1.8 1.6

6 Skin Melanoma 975 25,493 167,175 13.2 5.1

7 Skin Neuroma 361 556 66,314 0.8 1.8

8 Skin Melanoma 488 31,210 99,420 23.9 3.4

9 LN MM 2,796 18,402 661,343 2.7 17.9

10 LN MM 2,249 61,901 623,796 9.0 18.1

11 Skin Melanoma 768 10,964 91,754 10.7 2.7

12 LN MM 2,776 116,648 522,706 18.2 16.9

Total 18,122 306,166 3,396,668 8.3 100

BCC basal cell carcinoma, LN lymph node, MIS melanoma in situ, MM metastatic melanoma.

Fig. 3 Example image from NN-test set. a H&E image of melanoma
in a tissue section of skin (H&E, 400×); b corresponding IHC
(SOX10, 400×); c raw vIHC output, where the green color channel is
scaled to the SOX10-negativity score, and the red color channel is
scaled to the SOX10-positivity score. A strongly red nucleus is pre-
dicted to be SOX10 positive, while a strongly green nucleus is pre-
dicted to be SOX10 negative. d Corresponding color map where nuclei
are colored depending on their true SOX10 IHC and predicted vIHC
positivity. True positives are colored red, true negatives are colored
green, false positives are colored pink, and false negatives are
colored blue.

1642 C. R. Jackson et al.



board-certified dermatopathologist. This allowed for char-
acterization of the cell populations that were overcalled and
undercalled as SOX10-positive. An additional set of images
was used for this purpose (IHC-test set). Four H&E sub-
images from a single case of inflamed melanoma were
processed by the CNN. This case was chosen as it was not
used in the training set. The four sub-images in the IHC-test
set contained areas of normal skin, an area of dysplastic
junctional melanocytes, and frankly invasive melanoma
interfacing with lymphocytic inflammation. In a manner
similar to that described above, the H&E slide were scanned
at 400× resolution. The slide was then destained, and
stained with SOX10 IHC before it was scanned at 400×.

vIHC was applied to the H&E WSI, and the output was
converted to a color map that was overlaid on top of the
H&E image. In the color map, nuclei predicted to be
SOX10-negative were colored blue, while nuclei predicted
to be SOX10-postive were colored red. This was directly
compared with the SOX10 IHC. A final set of images
(subjective-test set) was also graphically evaluated and
consisted of a lymph node containing metastatic melanoma,
four cases of primary melanoma, and a case of basal cell
carcinoma. The appropriate staining pattern in the
subjective-training set was inferred by an experienced
board-certified dermatopathologist based on either the
diagnosis, or SOX10 IHC performed on an adjacent
tissue layer.

Results

IHC ground truth results

SOX10 IHC highlighted the nuclei of melanocytes, as well
as Schwann cells, and the myoepithelial cells of eccrine
glands. One case with a neuroma expressed SOX10. For the
purposes of training the vIHC, only melanocytes were
included in the ROI.

WSI results

The average vIHC SOX10-positivity and SOX10-negativity
scores were calculated for every nucleus in the NN-test set.
The TP and TN values were calculated by comparing the
ground truth category of each nucleus to the scores com-
puted by the vIHC network (Fig. 3). An ROC curve was
created (Fig. 4), and the area under the curve (AUC) was
calculated as 0.9422. The resulting sensitivity and specifi-
city were 91.62% and 85.66%, respectively at the optimal
point on the ROC curve which was a score of 0.3868. The
resulting cumulative distribution plot is shown in Fig. 5.

vIHC graphical evaluation results

The four sub-images from the IHC-test set were evaluated
(Fig. 6). SOX10 IHC highlighted several cell populations in
the IHC-test set images. Benign melanocytes, dysplastic
melanocytes, and malignant melanocytes within the mela-
noma were all highlighted.

The resulting vIHC was compared with the SOX10 IHC
stain performed on the same cell layer (Fig. 7). vIHC sub-
jectively highlighted most of the malignant melanoma cells,
and appropriately did not highlight most of the inflamma-
tory infiltrates interfacing with the lesion. Nests of dys-
plastic melanocytes were also appropriately highlighted.
The SOX10 vIHC was comparable to the IHC in areas of

Fig. 4 Receiver operator curve characteristics (ROC) curve for the
SOX10 vIHC. AUC area under the curve.

Fig. 5 Cumulative distribution plot of the SOX10-positivity scores.
The average SOX10-positivity score is calculated for each cell nuclei
within the NN-test set. Blue line: SOX10-positive cells; Orange line:
Reverse cumulative distribution plot of SOX10-negative cells.
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malignant melanoma, nested melanocytes, and in normal
skin, as assessed by an experienced board-certified derma-
topathologist. The vIHC was nevertheless imperfect, and
highlighted several foci of lymphocytes as well as occa-
sional keratinocytes (Fig. 7c). Rarely, melanoma cells were
improperly classified as nonmelanocytic.

vIHC was also performed on the images in the
subjective-test set (Fig. 8). For these images, the appropriate
IHC-staining pattern was inferred either based on SOX10
IHC performed on an adjacent tissue layer or based on the
pathologic diagnosis. These images included primary mel-
anomas, a metastatic melanoma, and basal cell carcinoma.
Most metastatic melanoma cells in the lymph node were
appropriately classified as melanocytic (Fig. 8b). Many
regions within primary melanomas were appropriately

highlighted (Fig. 8d), though not uniformly so. The basal
cell carcinoma appropriately had negative SOX10-vIHC
expression throughout most of the lesion. Adjacent to the
lesion, however, clusters of lymphocytes were inappropri-
ately labeled as SOX10-posivite (Fig. 8f, white arrows). A
Melan-A stain was used to verify these results.

Discussion

IHC is highly useful in surgical pathology, but problems
remain. It consumes tissue, increases turnaround time, and
adds to healthcare cost. Accurate vIHC may improve upon
these shortcomings. vIHC could also be used in novel ways,
such as counting individual cells and performing cellular
morphometrics. A neural network with single-cell resolu-
tion capable of providing data only obtainable from IHC has
not been made before. We document the development and
performance of the first such virtual assays.

In developing the CNN, the nuclei in the H&E and
corresponding IHC images required a high degree of
overlap for individual cells to be labeled appropriately.
Achieving this degree of overlap was difficult because the
size of the WSI could exceed 40,000 × 40,000 pixels. For

Fig. 6 Melanoma with adjacent lymphocytic inflammation from
the IHC-test set. a Hematoxylin and eosin (H&E) stains, along with
corresponding b SOX10 immunohistochemistry (IHC) performed on
the same tissue layer. c SOX10 virtual immunohistochemistry (vIHC)
was performed using the H&E image as an input. Lymphocytes that
were erroneously labeled as SOX10-positive by the vIHC are shown
(white arrows). Notably, artifacts that will be found in slides used for
clinical care, such as dotting marks, do not appear to have a significant
adverse effect on the neural network in this case.

Fig. 7 Region of inflammation abutting invasive melanoma from
the IHC-test set. a Hematoxylin and eosin (H&E) stains, along with
corresponding b SOX10 immunohistochemistry (IHC) performed on
the same tissue layer. c SOX10 virtual immunohistochemistry (vIHC)
was performed using the H&E image as an input. Lymphocytes that
were erroneously labeled as SOX10-positive by the vIHC are shown
(white arrows).
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reference, the width of a nucleus was ~28 pixels in dia-
meter. Even if only 50% overlap was required, such large
images would require a low tolerance for error, ~0.035%
(28 pixels × 50% ÷ 40,000 pixels). This margin for error is
significantly smaller than that required in other manipula-
tions of high-resolution images. Next-layer WSI registra-
tion, for example, needs only to have segments of tissue
overlap and not the nuclei themselves. Likewise, MRI and
CT scan image sizes are significantly smaller than those of
WSIs, and the required relative registration accuracy is
much lower [38]. There are likely several approaches to
overcome this problem. One approach would be to manu-
ally register the images, but this was beyond the technical
resources provided for our study. Moreover, as the goal of
the study was to establish a proof-of-concept for a high-
throughput method, a method that could be automated was
employed. The performance of the categorical CNN used to
remove poorly registered images from the data set is an
inherent source error for the downstream vIHC network, but
allows for a highly automated, reproducible workflow.
Future efforts can be directed toward achieving a more
efficient and robust registration process.

We assessed the SOX10 vIHC both quantitatively and
qualitatively. The quantitative assessment included an ROC

analysis (Fig. 3) using conventional IHC WSIs as the gold
standard. The computed probability of nuclear SOX10
expression from the neural network was treated as the
analyte. An optimal cutoff value of 0.3868 was determined.
The AUC was 0.9422 and the sensitivity and specificity at
this cutoff were 91.62% and 85.66%, respectively.

The F1 score is a measure of a test’s accuracy, and is
defined as:

F1 ¼ 2� sensitivity� positivepredictivevalue=ðsensitivity
þ positivepredictivevalueÞ:

Although not directly comparable due to the composition
of our respective test sets, the F1 score (0.890) was much
higher than that of a similar prior approach that used
phosphohistone-H3 to detect mitotic figures (0.668) [28].
The improvement may be attributable to a rigorous
automated-registration protocol that removed poorly regis-
tered images from the data set. The sensitivity and specifi-
city from our study were comparable to a similar work that
used immunofluorescence to investigate cytokeratin
expression in pancreatic carcinoma [25].

It is worth noting some of the differences between our
work and prior studies that used immunofluorescence to
annotate H&E images. The first difference is related to
biology; melanocyte morphology is notoriously varied [39–
41] when compared with the other tumors examined in the
small number of related prior studies. In our study, the NN-
master set consisted of multiple lesion and tissue types in
order to better simulate clinical conditions where the diag-
nosis is often not known prior to IHC. In contrast, previous
work focused on a single cancer type from a single tissue
source. It is possible that lesion and tissue diversity in the
present study may have improved generalizability, but
perhaps at the cost of accuracy. Future work could assess
whether using a single lesion type and tissue type improves
performance, and quantify how much generalizability, if
any, is lost as a result.

A qualitative evaluation was also performed because, unlike
other forms of testing, IHC requires correlation with mor-
phology and tissue architecture. Particularly in melanocytic
neoplasms, a small number of cells that are inappropriately
classified can drastically change the diagnosis if they are in a
critical location. For such reasons, all the images were reviewed
by a board-certified dermatopathologist (Figs. 6, 7). The
majority of the resulting images were not considered absolutely
equivalent to IHC. Many, if used blindly and without regard to
morphology, could result in a misdiagnosis. Much of the error
resulted from the algorithm mislabeling of keratinocytes.
Because pagetoid spread can be an important diagnostic feature
in the distinction of nevus from melanoma, this type of mis-
labeling had a significant negative impact on the qualitative
assessment. As vIHC outputs images, the errors are generally

Fig. 8 Subjective-test set examples. Representative images from three
different cases in the subjective-test set comparing H&E (a, c, e) to
SOX10 virtual immunohistochemistry (vIHC) (b, d, f). (a, b) A case
of melanoma metastasis within a lymph node that was appropriately
highlighted as SOX10-positive. (c, d) A case of melanoma with fea-
tures of superficial spreading and nevoid types. Melanocytic nests
were highlighted by the SOX10 vIHC. (e, f) A case of basal cell
carcinoma that was shown to be void of melanocytes using a Melan-A
stain. vIHC erroneously highlighted a population of lymphocytes near
the bottom of the image (white arrows).
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transparent; trends in mislabeling can be identified. Future
work could augment the training set to systematically address
these errors.

Our study had multiple limitations worth examining. One of
these is imperfect registration which could have led to erro-
neous nuclear categorization in the NN-master set. Tissue
warping during the wash out and IHC-staining steps added to
the challenge of image registration. Future studies could design
and assess protocols that minimize the degree of warping
during wash out. The effect of using different digital scanners,
along with different tissue processing and staining protocols,
was not examined in this study. Follow-up studies could be
performed with slides from different labs, and stained and
scanned under different protocols with the goal of documenting
the effects that these will have on model performance.

An important potential pitfall of vIHC is that it may not
perform in the same manner as the conventional IHC
marker on which it is was based, especially in lesions and
tissue sites of original not included in the original training
set. It is likely that each vIHC model needs to be empirically
tested on a multitude of different lesions from different sites
of origin, similar to a de novo IHC marker. The lesions
included in the test set should include all lesions under
diagnostic consideration, and the respective sensitivities and
specificities need to be established for each lesion type.
Fortunately, once the model is created, there is almost no
additional cost to performing such studies on a large scale.

Notably, our approach relied on a pathologist to highlight
ROI. By limiting fine registration to the ROI, the time
required to register the training set was reduced from
5.5 days to 1.5 days. Although ROI were used, it may be
desirable to register the entire WSI in the training set for
some applications.

As a pilot study, this work offers numerous directions for
useful future research. First, the algorithm’s performance
with regard to mislabeling of keratinocytes and lymphocytes
can be improved by including larger numbers of cases in the
training set. Second, other IHC targets may be developed.
Third, vIHC may augment pathology research efforts.

Opportunities abound for future studies in vIHC beyond
SOX10. It may prove feasible to design algorithms for other
common nuclear and cytoplasmic markers, including those
that are lineage-specific. PAX8, PAX5, CD3, CDX2, LCA,
TTF1, cytokeratins, CK5/6, OCT3/4, WT1, synaptophysin,
desmin, CK7, and CK20, for example, are commonly used
in the workup of a number of lesions [42]. vIHC could
potentially expedite the workup of these lesions. Ki67
would be valuable as it could be used to automatically
calculate the Ki67 index which has diagnostic or prognostic
value in several lesions [20–22]. vIHC offers a potential
avenue to standardize stain interpretation.

vIHC presents opportunities for basic science research in
at least two domains: (I) automated cell quantitation and (II)

the study of cellular morphometrics. Automated cell quan-
titation can be done by selecting a ROI, applying the vIHC,
and thereby obtaining a count of the cells that express the
marker. The study of cellular morphometrics could be aided
by vIHC as this allows for easy isolation of cells based on
their immunophenotype. Studies that examine properties of
specific cell types could be facilitated. For example,
research that examines the nuclear-to-cytoplasm ratio of
lesional cells could be automated while nonlesional cells
could easily be excluded from analysis.

In conclusion, conventional IHC is expensive, labor-inten-
sive, time-consuming, and can waste precious tissue in small
biopsy samples. Nevertheless, the diagnostic information pro-
vided by IHC can be extremely useful, and in some cases is
indispensable [20, 43, 44]. A rapid and inexpensive method to
accurately obtain the same information could have numerous
benefits for research and clinical care in both resource-heavy
and resource-limited settings. Our work is a proof-of-concept
study. It demonstrates that immunohistochemical data with
cell-specific resolution can be obtained using artificial intelli-
gence. The advantages in terms of time, labor, and cost are
clear. These initial results indicate that accurate vIHC is fea-
sible. Future work can examine methods to optimize image
registration and improve accuracy. With such improvements, it
is possible that an inexpensive, rapid, accurate tool, capable of
yielding indispensable diagnostic information, could become
widely used in the diagnosis and treatment of cancer patients.
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